【題目】如圖,E是長(zhǎng)方形ABCD的邊AB上的點(diǎn),EF⊥DE交BC于點(diǎn)F
(1)求證:△ADE∽△BEF;
(2)設(shè)H是ED上一點(diǎn),以EH為直徑作⊙O,DF與⊙O相切于點(diǎn)G,若DH=OH=3,求圖中陰影部分的面積(結(jié)果保留到小數(shù)點(diǎn)后面第一位,≈1.73,π≈3.14).
【答案】(1)見(jiàn)解析;(2)圖中陰影部分的面積約為6.2.
【解析】
(1)由條件可證∠AED=∠EFB,從而可證△ADE∽△BEF.
(2)由DF與⊙O相切,DH=OH=OG=3可得∠ODG=30°,從而有∠GOE=120°,并可求出DG、EF長(zhǎng),從而可以求出△DGO、△DEF、扇形OEG的面積,進(jìn)而可以求出圖中陰影部分的面積.
(1)證明:∵四邊形ABCD是矩形,
∴∠A=∠B=90°.
∵EF⊥DE,
∴∠DEF=90°.
∴∠AED=90°﹣∠BEF=∠EFB.
∵∠A=∠B,∠AED=∠EFB,
∴△ADE∽△BEF.
(2)解:∵DF與⊙O相切于點(diǎn)G,
∴OG⊥DG.
∴∠DGO=90°.
∵DH=OH=OG,
∴sin∠ODG=.
∴∠ODG=30°.
∴∠GOE=120°.
∴S扇形OEG==3π.
在Rt△DGO中,
cos∠ODG=.
∴DG=3.
在Rt△DEF中,
tan∠EDF=.
∴EF=3.
∴S△DEF=,
S△DGO=.
∴S陰影=S△DEF﹣S△DGO﹣S扇形OEG
=﹣3π
=.9﹣3π
≈9×1.73﹣3×3.14
=6.15
≈6.2
∴圖中陰影部分的面積約為6.2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王亮同學(xué)善于改進(jìn)學(xué)習(xí)方法,他發(fā)現(xiàn)對(duì)解題過(guò)程進(jìn)行回顧反思,效果會(huì)更好.某一天他利用30分鐘時(shí)間進(jìn)行自主學(xué)習(xí).假設(shè)他用于解題的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖甲所示,用于回顧反思的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量z的關(guān)系為z=,且用于回顧反思的時(shí)間不超過(guò)用于解題的時(shí)間.
(1)求王亮解題的學(xué)習(xí)收益量y與用于解題的時(shí)間x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)王亮如何分配解題和回顧反思的時(shí)間,才能使這30分鐘的學(xué)習(xí)收益總量最大?(學(xué)習(xí)收益總量=解題的學(xué)習(xí)收益量+回顧反思的學(xué)習(xí)收益量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△OAB在第一象限中,OA=AB,OA⊥AB,O是坐標(biāo)原點(diǎn),且函數(shù)y=正好過(guò)A,B兩點(diǎn),BE⊥x軸于E點(diǎn),則OE2﹣BE2的值為( 。
A. 3B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x1、x2是關(guān)于x的一元二次方程x2+(3a-1)x+2a2-1=0的兩個(gè)實(shí)數(shù)根,使得(3x1-x2)(x1-3x2)=-80成立,求其實(shí)數(shù)a的可能值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,E是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),連結(jié)BE并延長(zhǎng)交直線AD于點(diǎn)F.
(1)若AB=10,sin∠BAC=;
①求對(duì)角線AC的長(zhǎng);
②若BE=4,求AE的長(zhǎng);
(2)若點(diǎn)F在邊AD上,且=k,△BEC和四邊形ECDF的面積分別是S1和S2,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校李老師布置了兩道解方程的作業(yè)題:
選用合適的方法解方程:
(1)x(x+1)=2x;(2)(x+1)(x﹣3)=7
以下是王萌同學(xué)的作業(yè):
解:(1)移項(xiàng),得x(x+1)﹣2x=0 分解因式得,x(x+1﹣2)=0 所以,x=0,或x﹣1=0 所以,x1=0,x2=1 | (2)變形得,(x+1)(x﹣3)=1×7 所以,x+1=7,x﹣3=1 解得,x1=6,x2=4 |
請(qǐng)你幫王萌檢查他的作業(yè)是否正確,把不正確的改正過(guò)來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校準(zhǔn)備給長(zhǎng)12米,寬8米的矩形室內(nèi)場(chǎng)地進(jìn)行地面裝飾,現(xiàn)將其劃分為區(qū)域Ⅰ(菱形),區(qū)域Ⅱ(4個(gè)全等的直角三角形),剩余空白部分記為區(qū)域Ⅲ;點(diǎn)為矩形和菱形的對(duì)稱中心,,,,為了美觀,要求區(qū)域Ⅱ的面積不超過(guò)矩形面積的,若設(shè)米.
甲 | 乙 | 丙 | |
單價(jià)(元/米2) |
(1)當(dāng)時(shí),求區(qū)域Ⅱ的面積.
(2)計(jì)劃在區(qū)域Ⅰ,Ⅱ分別鋪設(shè)甲,乙兩款不同的深色瓷磚,區(qū)域Ⅲ鋪設(shè)丙款白色瓷磚,
①在相同光照條件下,當(dāng)場(chǎng)地內(nèi)白色區(qū)域的面積越大,室內(nèi)光線亮度越好.當(dāng)為多少時(shí),室內(nèi)光線亮度最好,并求此時(shí)白色區(qū)域的面積.
②三種瓷磚的單價(jià)列表如下,均為正整數(shù),若當(dāng)米時(shí),購(gòu)買三款瓷磚的總費(fèi)用最少,且最少費(fèi)用為7200元,此時(shí)__________,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為進(jìn)一步深化基教育課程改革,構(gòu)建符合素質(zhì)教育要求的學(xué)校課程體系,某學(xué)校自主開(kāi)發(fā)了A書法、B閱讀,C足球,D器樂(lè)四門校本選修課程供學(xué)生選擇,每門課程被選到的機(jī)會(huì)均等.
(1)學(xué)生小紅計(jì)劃選修兩門課程,請(qǐng)寫出所有可能的選法;
(2)若學(xué)生小明和小剛各計(jì)劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線交于O點(diǎn),DE∥AC,CE∥BD,
(1)求證:四邊形OCED是矩形;
(2)若AD=5,BD=8,計(jì)算sin∠DCE的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com