【題目】對(duì)于四邊形,給出下列組條件,①,,;;;,.其中能得到四邊形是矩形的條件有(

A. B. C. D.

【答案】D

【解析】

根據(jù)矩形的判定,用排除法即可判定所選答案.

①由∠A=90°,B=C=D可以得到∠A=B=C=D=90°,故①正確;

②由∠A=B=90°,C=D=90°可以得到∠A=B=C=D=90°,

故②正確;

③∠A=B=C=D能得到四個(gè)角都是直角,故③正確;

④∠A=B=C=90°,有三個(gè)角是直角的四邊形為矩形,故④正確;

AC=BD,只有一組對(duì)邊相等的四邊形不一定是矩形,故⑤錯(cuò)誤,

ABCD,ADBC,只能得到四邊形為平行四邊形,故⑥錯(cuò)誤,

∴正確的有4個(gè),

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2-x+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-2),已知B點(diǎn)坐標(biāo)為(4,0)

(1)求拋物線的解析式;

(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);

(3)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),記點(diǎn)M到線段BC的距離為d,當(dāng)d取最大值時(shí),求出此時(shí)M點(diǎn)的坐標(biāo);

(4)若點(diǎn)P是拋物線上一點(diǎn),點(diǎn)E是直線y=-x+1上的動(dòng)點(diǎn),是否存在點(diǎn)P、E,使以點(diǎn)A,點(diǎn)B,點(diǎn)P,點(diǎn)E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位同學(xué)住在同一小區(qū),學(xué)校與小區(qū)相距2700米.一天甲從小區(qū)步行出發(fā)去學(xué)校,12分鐘后乙也出發(fā),乙先騎公交自行車,途經(jīng)學(xué)校又騎行一段路到達(dá)還車點(diǎn)后,立即步行走回學(xué)校.已知步行速度甲比乙每分鐘快5米,圖中的折線表示甲、乙兩人之間的距離y(米)與甲步行時(shí)間x(分鐘)的函數(shù)關(guān)系圖象.則(    )

A.乙騎自行車的速度是180/B.乙到還車點(diǎn)時(shí),甲,乙兩人相距850

C.自行車還車點(diǎn)距離學(xué)校300D.乙到學(xué)校時(shí),甲距離學(xué)校200

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長(zhǎng)線于點(diǎn)E.

(1)求∠CBE的度數(shù);

(2)過(guò)點(diǎn)DDFBE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長(zhǎng)線于點(diǎn)E.

(1)求∠CBE的度數(shù);

(2)過(guò)點(diǎn)DDFBE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知DABC內(nèi)一點(diǎn),CD平分∠ACB,BDCD,∠A=ABD,若AC=9BC=5,則CD的長(zhǎng)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,點(diǎn)開(kāi)始沿折線的速度運(yùn)動(dòng),點(diǎn)開(kāi)始沿邊以的速度移動(dòng),如果點(diǎn)、分別從、同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)________時(shí),四邊形也為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,該小組發(fā)現(xiàn)8高旗桿DE的影子EF落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開(kāi)展了測(cè)算小橋所在圖的半徑的活動(dòng)。小剛身高1.6,測(cè)得其影長(zhǎng)為2.4,同時(shí)測(cè)得EG的長(zhǎng)為3,HF的長(zhǎng)為1,測(cè)得拱高(弧GH的中點(diǎn)到弦GH的距離,即MN的長(zhǎng))為2,求小橋所在圓的半徑。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABx軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,﹣2).

(1)求直線AB的解析式;

(2)若直線AB上的點(diǎn)C在第一象限,且SBOC=2,求經(jīng)過(guò)點(diǎn)C的反比例函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案