【題目】如圖,矩形紙片ABCD中,AD= 1,AB一2.將紙片折疊,使頂點A與邊CD上的點E重合,折痕FG分別與AB、CD交于點G、F,AE與FG交于點儀當(dāng)觸ED的外接圓與BC相切于BC的中點N.則折痕FG的長為________
【答案】
【解析】試題解析:設(shè)AE與FG的交點為O.
根據(jù)軸對稱的性質(zhì),得AO=EO.
取AD的中點M,連接MO.
則MO=DE,MO∥DC.
設(shè)DE=x,則MO=x,
在矩形ABCD中,∠C=∠D=90°,
∴AE為△AED的外接圓的直徑,O為圓心.
延長MO交BC于點N,則ON∥CD.
∴∠CNM=180°-∠C=90°.
∴ON⊥BC,四邊形MNCD是矩形.
∴MN=CD=AB=2.∴ON=MN-MO=2-x.
∵△AED的外接圓與BC相切,
∴ON是△AED的外接圓的半徑.
∴OE=ON=2-x,AE=2ON=4-x.
在Rt△AED中,AD2+DE2=AE2,
∴12+x2=(4-x)2.
解這個方程,得x=.
∴DE=,OE=2-x=.
根據(jù)軸對稱的性質(zhì),得AE⊥FG.
∴∠FOE=∠D=90°.可得FO=.
又AB∥CD,∴∠EFO=∠AGO,∠FEO=∠GAO.
∴△FEO≌△GAO.∴FO=GO.
∴FG=2FO=.
∴折痕FG的長是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)生上學(xué)帶手機的現(xiàn)象越來越受到社會的關(guān)注,為此媒體記者隨機調(diào)查了某校若干名學(xué)生上學(xué)帶手機的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計圖(不完整),請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖1、圖2補充完整;
(3)現(xiàn)有4名學(xué)生,其中A類兩名,B類兩名,從中任選2名學(xué)生,求這兩名學(xué)生為同一類型的概率(用列表法或樹狀圖法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=(x﹣3)2﹣1與y軸交于點C,則點C的坐標(biāo)為( 。
A.(3,6)B.(0,8)
C.(0,﹣1)D.(4,0)或(2,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個正五棱柱的底面邊長為2cm,高為4cm。
(1)這個棱柱共有多少個面?計算它的側(cè)面積;
(2)這個棱柱共有多少個頂點?有多少條棱?
(3)試用含有的代數(shù)式表示棱柱的頂點數(shù)、面數(shù)、與棱的條數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的一邊AB為直徑的⊙O過點C,若∠AOC=70°,則∠BAD等于( )
A.145°
B.140°
C.135°
D.130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上表示﹣2和﹣101的兩個點分別為A,B,那么A,B兩點間的距離等于( )
A.99
B.100
C.102
D.103
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)m為任意實數(shù)時,點A(m2+1,-2)在第幾象限( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4,AD=6,M是AD邊的中點,P是射線AB上的一個動點(不與A、B重合),MN⊥PM交射線BC于N點.
(1)如圖1,當(dāng)點N與點C重合時,求:AP的長;
(2)如圖2,在點N的運動過程中,求證: 為定值;
(3)在射線AB上,是否存在點P,使得∽,若存在,求此時AP的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com