(8分)在□ABCD中,E、F分別是AB、CD的中點,連接AF、CE.

(1)求證:△BEC≌△DFA;

(2)連接AC,當CA=CB時,判斷四邊形AECF是什么特殊四邊形?并證明你的結論.

 

 

證明:(1)∵四邊形ABCD是平行四邊形

∴AB=CD,∠B=∠D,BC=AD

∵E、F分別是AB、CD的中點

∴BE=AB,DF=CD

∴BE=DF

∴△BEC≌△DFA

(2)四邊形AECF是梯形。

∵四邊形ABCD是平行四邊形,

∴AB∥CD且AB=CD。

∵E、F分別是AB、CD的中點

∴AE=AB,CF=CD

∴AE∥CF且AE=CF。

∵CA=CB,E是AB的中點,

∴CE⊥AB,即∠AEC=90°

AECF是矩形。

解析:略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在四邊形ABCD中,AC、BD是四邊形ABCD的兩條對角線,點E、F、G、H分別是在四邊形ABCD的四邊上的動點,但E、F、G、H不與A、B、C、D重合,且EF∥BD∥GH,F(xiàn)G∥AC∥HE.
(1)若對角線AC=BD=a(定值),求證:四邊形EFGH的周長是定值;
(2)若AC=m,BD=n,m、n為定值,但m≠n,則四邊形EFGH的周長是定值嗎?請指出,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)

在   ABCD中,AC、BD交于點O,過點O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點,連結EG、GF、FH、HE.

(1)如圖①,試判斷四邊形EGFH的形狀,并說明理由;

(2)如圖②,當EF⊥GH時,四邊形EGFH的形狀是          ;

(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是          ;

(4)如圖④,在(3)的條件下,若AC⊥BD,試判斷四邊形EGFH的形狀,并說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)
在   ABCD中,AC、BD交于點O,過點O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點,連結EG、GF、FH、HE.

(1)如圖①,試判斷四邊形EGFH的形狀,并說明理由;
(2)如圖②,當EF⊥GH時,四邊形EGFH的形狀是          ;
(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是         ;
(4)如圖④,在(3)的條件下,若AC⊥BD,試判斷四邊形EGFH的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(山東萊蕪) 題型:解答題

(本題滿分10分)
在   ABCD中,AC、BD交于點O,過點O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點,連結EG、GF、FH、HE.

(1)如圖①,試判斷四邊形EGFH的形狀,并說明理由;
(2)如圖②,當EF⊥GH時,四邊形EGFH的形狀是          ;
(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是         ;
(4)如圖④,在(3)的條件下,若AC⊥BD,試判斷四邊形EGFH的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(四川內江) 題型:解答題

(本題滿分10分)

在   ABCD中,AC、BD交于點O,過點O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點,連結EG、GF、FH、HE.

(1)如圖①,試判斷四邊形EGFH的形狀,并說明理由;

(2)如圖②,當EF⊥GH時,四邊形EGFH的形狀是           ;

(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是          ;

(4)如圖④,在(3)的條件下,若AC⊥BD,試判斷四邊形EGFH的形狀,并說明理由.

 

查看答案和解析>>

同步練習冊答案