【題目】初一(1)班針對你最喜愛的課外活動項目對全班學生進行調(diào)查(每名學生分別選一個活動項目),并根據(jù)調(diào)查結果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.

男、女生所選項目人數(shù)統(tǒng)計表

項目

男生(人數(shù))

女生(人數(shù))

機器人

7

9

3D打印

m

4

航模

2

2

其他

5

n

根據(jù)以上信息解決下列問題:

1m   ,n   ;

2)扇形統(tǒng)計圖中機器人項目所對應扇形的圓心角度數(shù)為   °;

3)從選航模項目的4名學生中隨機選取2名學生參加學校航模興趣小組訓練,請用列舉法(畫樹狀圖或列表)求所選取的2名學生中恰好有1名男生、1名女生的概率.

【答案】(1)8,3;(2)144;(3)

【解析】

1)由航模的人數(shù)和其所占的百分比可求出總?cè)藬?shù),進而可求出3D打印的人數(shù),則m的值可求出,從而n的值也可求出;

2)由機器人項目的人數(shù)所占總?cè)藬?shù)的百分比即可求出所對應扇形的圓心角度數(shù);

3)應用列表法的方法,求出恰好選到1名男生和1名女生的概率是多少即可.

解:(1)由兩種統(tǒng)計表可知:總?cè)藬?shù)=4÷10%40人,

3D打印項目占30%,

3D打印項目人數(shù)=40×30%12人,

m1248

n401612453,

故答案為:8,3;

2)扇形統(tǒng)計圖中機器人項目所對應扇形的圓心角度數(shù)=×360°144°,

故答案為:144;

3)列表得:

1

2

1

2

1

﹣﹣

21

11

21

2

12

﹣﹣

12

22

1

11

21

﹣﹣

21

2

12

22

12

﹣﹣

由表格可知,共有12種可能出現(xiàn)的結果,并且它們都是等可能的,其中/span>“1名男生、1名女生8種可能.

所以P 1名男生、1名女生)=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E在正方形ABCD的邊CD上運動,ACBE相交于點F

1)如圖1,當點E運動到DC的中點時,求△ABF與四邊形ADEF的面積之比;

2)如圖2,當點E運動到CEED21時,求△ABF與四邊形ADEF的面積之比;

3)當點E運動到CEEDn1時(n是正整數(shù)),猜想△ABF與四邊形ADEF的面積之比(只寫結果,不要求寫過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知在△ABC中,∠B=90°,AB=6cm,BC=12cm,點Q從點A開始沿AB邊向點B1cm/s的速度移動,點P從點B開始沿BC邊向點C2cm/s的速度移動.

(1)如果Q、P分別從A、B兩點出發(fā),那么幾秒后,△PBQ的面積等于8cm2

(2)在(1)中,△PBQ的面積能否等于10cm2?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為  ▲  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OF是∠MON的平分線,點A在射線OM上,PQ是直線ON上的兩動點,點Q在點P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OFON交于點B、點C,連接ABPB

1)如圖1,當P、Q兩點都在射線ON上時,請直接寫出線段ABPB的數(shù)量關系;

2)如圖2,當P、Q兩點都在射線ON的反向延長線上時,線段ABPB是否還存在(1)中的數(shù)量關系?若存在,請寫出證明過程;若不存在,請說明理由;

3)如圖3,MON=60°,連接AP,設=k,當PQ兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.

【答案】(1)AB=PB;(2)存在;(3)k=0.5.

【解析】試題分析:(1)結論:AB=PB.連接BQ,只要證明AOB≌△PQB即可解決問題;

2)存在.證明方法類似(1);

3)連接BQ.只要證明ABP∽△OBQ,即可推出=,由AOB=30°,推出當BAOM時, 的值最小,最小值為0.5,由此即可解決問題;

試題解析:解:(1)連接:AB=PB.理由:如圖1中,連接BQ

BC垂直平分OQ,BO=BQ,∴∠BOQ=∠BQOOF平分MON,∴∠AOB=∠BQO,OA=PQ∴△AOB≌△PQB,AB=PB

2)存在,理由:如圖2中,連接BQ

BC垂直平分OQ,BO=BQ,∴∠BOQ=∠BQOOF平分MON,BOQ=∠FON,∴∠AOF=∠FON=∠BQC∴∠BQP=∠AOB,OA=PQ∴△AOB≌△PQB,AB=PB

3)連接BQ

易證ABO≌△PBQ,∴∠OAB=BPQAB=PB,∵∠OPB+BPQ=180°∴∠OAB+OPB=180°,AOP+ABP=180°∵∠MON=60°,∴∠ABP=120°BA=BP,∴∠BAP=BPA=30°BO=BQ,∴∠BOQ=BQO=30°,∴△ABP∽△OBQ, =,∵∠AOB=30°BAOM時, 的值最小,最小值為0.5k=0.5

點睛:本題考查相似綜合題、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識,解題的關鍵是正確尋找全等三角形解決問題,學會用轉(zhuǎn)化的思想思考問題,屬于中考?碱}型.

型】解答
束】
28

【題目】如圖,已知拋物線y=ax2+x+c與x軸交于A,B兩點,與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣x﹣4與x軸交于點D,點P是拋物線y=ax2+x+c上的一動點,過點P作PEx軸,垂足為E,交直線l于點F.

(1)試求該拋物線表達式;

(2)如圖(1),若點P在第三象限,四邊形PCOF是平行四邊形,求P點的坐標;

(3)如圖(2),過點P作PHy軸,垂足為H,連接AC.

求證:ACD是直角三角形;

試問當P點橫坐標為何值時,使得以點P、C、H為頂點的三角形與ACD相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求AOB的面積;

(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,拋物線y=﹣x2+bx+cx軸,y軸分別相交于點A(﹣1,0),B0,3)兩點,其頂點為D,

1)求該拋物線的解析式;

2)若拋物線與x軸另一個交點為E,求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,

求一次函數(shù)的表達式;

若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,AB為⊙O直徑,AB=12AD平分∠BAC,交BC于點 E,交⊙O于點D,連接BD.

1)求證:BAD=CBD;

2)若∠AEB=125°,求的長.

查看答案和解析>>

同步練習冊答案