如圖,已知雙曲線經(jīng)過點D(6,1),點C是雙曲線第三象限分支上的動點,過C作CA⊥x軸,過D作DB⊥y軸,垂足分別為A,B,連接AB,BC.

(1)求k的值;
(2)若△BCD的面積為12,求直線CD的解析式;
(3)判斷AB與CD的位置關系,并說明理由.
(1)k=6;(2);(3)根據(jù)題意求出點A、B的坐標,然后利用待定系數(shù)法求出直線AB的解析式,可知與直線CD的解析式k值相等,所以AB、CD平行.

試題分析:(1)把點D的坐標代入雙曲線解析式,進行計算即可得解;
(2)先根據(jù)點D的坐標求出BD的長度,再根據(jù)三角形的面積公式求出點C到BD的距離,然后求出點C的縱坐標,再代入反比例函數(shù)解析式求出點C的坐標,然后利用待定系數(shù)法求一次函數(shù)解析式解答;
(3)根據(jù)題意求出點A、B的坐標,然后利用待定系數(shù)法求出直線AB的解析式,可知與直線CD的解析式k值相等,所以AB、CD平行.
解:(1)∵雙曲線經(jīng)過點D(6,1),
,解得k=6;
(2)設點C到BD的距離為h,
∵點D的坐標為(6,1),DB⊥y軸,
∴BD=6,
∴SBCD=×6•h=12,
解得h=4,
∵點C是雙曲線第三象限上的動點,點D的縱坐標為1,
∴點C的縱坐標為1-4=-3,
,解得x=-2,
∴點C的坐標為(-2,-3),
設直線CD的解析式為y=kx+b,

所以,直線CD的解析式為;
(3)AB∥CD.理由如下:
∵CA⊥x軸,DB⊥y軸,設點C的坐標為(c,),點D的坐標為(6,1),
∴點A、B的坐標分別為A(c,0),B(0,1),
設直線AB的解析式為y=mx+n,

所以,直線AB的解析式為y=-x+1,
設直線CD的解析式為y=ex+f,

∴直線CD的解析式為y=-x+,
∵AB、CD的解析式k都等于-,
∴AB與CD的位置關系是AB∥CD.
點評:本題是對反比例函數(shù)的綜合考查,主要利用了待定系數(shù)法求函數(shù)解析式,三角形的面積的求解,待定系數(shù)法是求函數(shù)解析式最常用的方法,一定要熟練掌握并靈活運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知一條直線經(jīng)過點A(0,2)、點B(1,0),將這條直線向左平移與x軸、y軸分別交與點C、點D.若DB=DC,則直線CD的函數(shù)解析式為   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

甲、乙兩車分別從A,B兩地同時出發(fā)相向而行.并以各自的速度勻速行駛,甲車途徑C地時休息一小時,然后按原速度繼續(xù)前進到達B地;乙車從B地直接到達A地,如圖是甲、乙兩車和B地的距離y(千米)與甲車出發(fā)時間x(小時)的函數(shù)圖象.
(1)直接寫出a,m,n的值;
(2)求出甲車與B地的距離y(千米)與甲車出發(fā)時間x(小時)的函數(shù)關系式(寫出自變量x的取值范圍);
(3)當兩車相距120千米時,乙車行駛了多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)y=﹣x+5,y=,它們的共同點是:①函數(shù)y隨x的增大而減少;②都有部分圖象在第一象限;③都經(jīng)過點(1,4),其中錯誤的有(  )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商店欲購進甲、乙兩種商品,已知甲的進價是乙的進價的一半,進3件甲商品和1件乙商品恰好用200元.甲、乙兩種商品的售價每件分別為80元、130元,該商店決定用不少于6710元且不超過6810元購進這兩種商品共100件.
(1)求這兩種商品的進價.
(2)該商店有幾種進貨方案?哪種進貨方案可獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某地為改善生態(tài)環(huán)境,積極開展植樹造林,甲、乙兩人從近幾年的統(tǒng)計數(shù)據(jù)中有如下發(fā)現(xiàn):

(1)求y2與x之間的函數(shù)關系式?
(2)若上述關系不變,試計算哪一年該地公益林面積可達防護林面積的2倍?這時該地公益林的面積為多少萬畝?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

均勻地向一個瓶子注水,最后把瓶子注滿.在注水過程中,水面高度h隨時間t的變化規(guī)律如圖所示,則這個瓶子的形狀是下列的
 
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

寫出一個過點(0,3),且函數(shù)值y隨自變量x的增大而減小的一次函數(shù)關系式:
       .(填上一個答案即可)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,一個裝有進水管和出水管的容器,從某時刻開始的4分鐘內只進水不出水,在隨后的8分鐘內既進水又出水,接著關閉進水管直到容器內的水放完.假設每分鐘的進水量和出水量是兩個常數(shù),容器內的水量y(單位:升)與時間x(單位:分)之間的部分關系.那么,從關閉進水管起     分鐘該容器內的水恰好放完.

查看答案和解析>>

同步練習冊答案