【題目】如圖,∠A=90°,E為BC上一點,A點和E點關(guān)于BD對稱,B點、C點關(guān)于DE對稱,求∠ABC和∠C的度數(shù).

【答案】解:∵A點和E點關(guān)于BD對稱,

∴∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.

又B點、C點關(guān)于DE對稱,

∴∠DBE=∠C,∠ABC=2∠C.

∵∠A=90°,

∴∠ABC+∠C=2∠C+∠C=3∠C=90°.

∴∠C=30°

∴∠ABC=2∠C=60°.


【解析】依據(jù)軸對稱圖形的性質(zhì)可得到∠ABD=∠EBD,然后依據(jù)B點、C點關(guān)于DE對稱可得∠DBE=∠BCD,結(jié)合上式可得:∠ABC=2∠BCD,且∠ABC+∠BCD=90°,進而求得∠ABC、∠C的值.
【考點精析】關(guān)于本題考查的軸對稱的性質(zhì),需要了解關(guān)于某條直線對稱的兩個圖形是全等形;如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應點連線的垂直平分線;兩個圖形關(guān)于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】情境觀察:
(1)如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點F. ①寫出圖1中所有的全等三角形;
②線段AF與線段CE的數(shù)量關(guān)系是
(2)如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點E. 求證:AE=2CD.
(3)如圖3,△ABC中,∠BAC=45°,AB=BC,點D在AC上,∠EDC= ∠BAC,DE⊥CE,垂足為E,DE與BC交于點F.求證:DF=2CE. 要求:請你寫出輔助線的作法,并在圖3中畫出輔助線,不需要證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下面各題
(1)計算:(3﹣ )(3+ )+ (2﹣
(2)解方程: +1=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在平面直角坐標系xOy中的位置如圖所示.(不寫解答過程,直接寫出結(jié)果)

(1)若△A1B1C1與△ABC關(guān)于原點O成中心對稱,則點A1的坐標為 ;

(2)將△ABC向右平移4個單位長度得到△A2B2C2,則點B2的坐標為 ;

(3)將△ABC繞O點順時針方向旋轉(zhuǎn)90°,則點C走過的路徑長為

(4)在x軸上找一點P,使PA+PB的值最小,則點P的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市將大、中、小學生的視力進行抽樣分析,其中大、中、小學生的人數(shù)比為2:3:5,若已知中學生被抽到的人數(shù)為150人,則應抽取的樣本容量等于

A1500 B1000 C150 D500

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠MAN=120°,AC平分∠MAN,點B、D分別在AN、AM上.
(1)如圖1,若∠ABC=∠ADC=90°,請你探索線段AD、AB、AC之間的數(shù)量關(guān)系,并證明之;
(2)如圖2,若∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,BD平分∠ABC,BC的中垂線交BC于點E,交BD于點F,連接CF.若∠A=60°,∠ABD=24°,則∠ACF的度數(shù)為(
A.48°
B.36°
C.30°
D.24°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知圓柱的側(cè)面積是20π cm2 , 高為5cm,則圓柱的底面半徑為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解剛生產(chǎn)的10 000臺電視機的壽命情況,從中抽取100臺電視機進行實驗,這個問題中的樣本容量是________

查看答案和解析>>

同步練習冊答案