【題目】如圖,拋物線與軸負(fù)半軸交于點(diǎn),與軸正半軸交于點(diǎn),與軸負(fù)半軸交于點(diǎn),,,.
(1)求點(diǎn)的坐標(biāo)和拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)是上一點(diǎn)(不與點(diǎn)、重合),過(guò)點(diǎn)作軸的垂線,交拋物線于點(diǎn),交于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(3)設(shè)拋物線的對(duì)稱軸交軸于點(diǎn),在(2)的條件下,點(diǎn)是拋物線對(duì)稱軸上一點(diǎn),點(diǎn)是坐標(biāo)平面內(nèi)一點(diǎn),是否存在點(diǎn)、,使以、、、為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1),;(2);(3)存在, ,,
【解析】
(1)先證明,利用相似三角形的性質(zhì)得到,求出C點(diǎn)的坐標(biāo),再用待定系數(shù)法即可得到拋物線的函數(shù)關(guān)系式;
(2) 設(shè)直線函數(shù)關(guān)系式為,用待定系數(shù)法求出直線函數(shù)關(guān)系式,再假設(shè)D點(diǎn)的坐標(biāo),根據(jù)題意得到求解即可得到答案;
(3)根據(jù)勾股定理得到,再分情況討論即可得到答案.
解(1)由題意,,,,
∵
∴,
,
∴
∴
∴
∴
∴
分別把,,代入得
解得,,,
∴
(2)設(shè)直線函數(shù)關(guān)系式為
代入,得,解得,,
∴
設(shè)
∴,
∴,
由題意
解得,,(舍去)
將代入,得
∴
(3)存在
當(dāng)以、、、為頂點(diǎn)的四邊形是菱形時(shí),是等腰三角形.
由題意,,,
在中,由勾股定理的,
①時(shí),
∵點(diǎn)到直線的距離是
∴此時(shí)點(diǎn)不存在.
②時(shí),如圖
作于點(diǎn),
∴,
在中,由勾股定理得,
∴或
∴,
③當(dāng)時(shí),
即
設(shè),
解得
∴
綜上,,,
此時(shí),,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明是一名健步走運(yùn)動(dòng)的愛好者,他用手機(jī)軟件記錄了他近期健步走的步數(shù)(單位:萬(wàn)步),繪制出如下的統(tǒng)計(jì)圖①和統(tǒng)計(jì)圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次記錄的總天數(shù)為_____________,圖①中m的值為______________;
(Ⅱ)求小名近期健步走步數(shù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),若小明堅(jiān)持健步走一年(記為365天),試估計(jì)步數(shù)為1.1萬(wàn)步的天數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,是等邊三角形,點(diǎn),點(diǎn),點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)、不重合).直線是經(jīng)過(guò)點(diǎn)的一條直線,把沿直線折疊,點(diǎn)的對(duì)應(yīng)點(diǎn)是點(diǎn).
(1)如圖①,當(dāng)時(shí),若直線,求點(diǎn)的坐標(biāo);
(2)如圖②,當(dāng)點(diǎn)在邊上運(yùn)動(dòng)時(shí),若直線,求的面積;
(3)當(dāng)時(shí),在直線變化過(guò)程中,求面積的最大值(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是△ABC外接圓的直徑,O為圓心,CHAB,垂足為H,且∠PCA=∠ACH, CD平分∠ACB,交⊙O于點(diǎn)D,連接BD,AP=2.
(1)判斷直線PC是否為⊙O的切線,并說(shuō)明理由;
(2)若∠P=30°,求AC、BC、BD的長(zhǎng).
(3)若tan∠ACP=,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為豐富同學(xué)們的校園生活,某校積極開展了體育類、文藝類、文化類等形式多樣的社團(tuán)活動(dòng)(每人僅限參加一項(xiàng)).李老師在九年級(jí)隨機(jī)抽取了2個(gè)班級(jí),對(duì)這2個(gè)班級(jí)參加體育類社團(tuán)活動(dòng)的人數(shù)情況進(jìn)行了統(tǒng)計(jì),并繪制了下面的統(tǒng)計(jì)圖.已知這2個(gè)班級(jí)共有的學(xué)生參加“足球”項(xiàng)目,且扇形統(tǒng)計(jì)圖中“足球”項(xiàng)目扇形圓心角為.
(1)這2個(gè)班參加體育類社團(tuán)活動(dòng)人數(shù)為______;
(2)請(qǐng)?jiān)趫D中將表示“棒球”項(xiàng)目的圖形補(bǔ)充完整;
(3)若該校九年級(jí)共有600名學(xué)生,請(qǐng)你根據(jù)上述信息估計(jì)該校九年級(jí)共有多少名學(xué)生參加“棒球”項(xiàng)目?
(4)小明和小剛都是這2個(gè)班的學(xué)生,且都參加了體育類社團(tuán)活動(dòng),請(qǐng)用列表或樹狀圖法求小明和小剛都參加足球社團(tuán)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形中,對(duì)角線、相交于點(diǎn),,,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以的速度向點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以支向點(diǎn)運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)停止時(shí)另一個(gè)動(dòng)點(diǎn)也隨之停止,設(shè)運(yùn)動(dòng)時(shí)間為(單位:)(),以點(diǎn)為圓心,長(zhǎng)為半徑的⊙M與射線、線段分別交于點(diǎn)、,連接.
(1)求的長(zhǎng)(用含有的代數(shù)式表示),并求出的取值范圍;
(2)當(dāng)為何值時(shí),線段與⊙M相切?
(3)若⊙M與線段只有一個(gè)公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)正方形的頂點(diǎn),且與相切于點(diǎn)分別交于兩點(diǎn),連接并延長(zhǎng)交于點(diǎn).
(1)求證
(2)連接交于點(diǎn),連接,若求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:內(nèi)接于,為劣弧的中點(diǎn),.
(1)如圖1,當(dāng)為的直徑時(shí),求證:;
(2)如圖2,當(dāng)不是的直徑,且時(shí),求證:;
(3)如圖3在(2)的條件下,,,求長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為半圓O的直徑,過(guò)點(diǎn)B作PB⊥OB,連接AP交半圓O于點(diǎn)C,D為BP上一點(diǎn),CD是半圓O的切線.
(1)求證:CD=DP.
(2)已知半圓O的直徑為,PC=1,求CD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com