【題目】如圖,中,的角平分線,,邊上,以為直徑的半圓經(jīng)過點(diǎn),交于點(diǎn)

(1)求證:的切線;

(2)已知,的半徑為,求圖中陰影部分的面積.(最后結(jié)果保留根號(hào)和)

【答案】(1)證明見解析;(2)6

【解析】

1)連接OE.根據(jù)OBOE得到∠OBE=∠OEB,然后再根據(jù)BE是△ABC的角平分線得到∠OEB=∠EBC,從而判定OEBC,最后根據(jù)∠C90°得到∠AEO=∠C90°證得結(jié)論AC是⊙O的切線.

2)連接OF,利用S陰影部分S梯形OECFS扇形EOF求解即可.

1)連接OE

OB=OE

OBE=∠OEB

BEABC的角平分線

∴∠OBE=∠EBC

∴∠OEB=∠EBC

OEBC

∵∠C=90°

∴∠AEO=∠C=90°

OE為半徑AC是圓O的切線

2)連接OF

O的半徑為4,A=30°,AO=2OE=8,

AE=4,AOE=60°,

AB=12,

BC=AB=6 AC=6,

CE=ACAE=2

OB=OF,ABC=60°,

∴△OBF是正三角形.

∴∠FOB=60°,CF=64=2,EOF=60°

∴S梯形OECF=2+4×2=6 S扇形EOF=

∴S陰影部分=S梯形OECFS扇形EOF=6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 的對(duì)角線交于點(diǎn)平分于點(diǎn),于點(diǎn),且,連接.下列結(jié)論:;;:其中正確的結(jié)論有__________(填寫所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,,, 矩形的一邊邊上、分別在,于點(diǎn)

(1)求證;

(2)設(shè)當(dāng)為何值時(shí),矩形的面積最大?并求出最大面積

(3)當(dāng)矩形的面積最大時(shí),該矩形以每秒個(gè)單位的速度沿射線勻速向上運(yùn)動(dòng)(當(dāng)矩形的邊到達(dá)點(diǎn)時(shí)停止運(yùn)動(dòng)),設(shè)運(yùn)動(dòng)時(shí)間為,矩形重疊部分的面積為,的函數(shù)關(guān)系式,并寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)EF,G,H分別在邊AB,BC,CD,DA上,AECG,AHCF,且EG平分∠HEF

(1)求證:△AEH≌△CGF

(2)若∠EFG90°.求證:四邊形EFGH是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中,,P是斜邊AC上一個(gè)動(dòng)點(diǎn),以即為直徑作BC于點(diǎn)D,與AC的另一個(gè)交點(diǎn)E,連接DE

1)當(dāng)時(shí),

①若,求的度數(shù);

②求證

2)當(dāng),時(shí),

①是含存在點(diǎn)P,使得是等腰三角形,若存在求出所有符合條件的CP的長(zhǎng);

②以D為端點(diǎn)過P作射線DH,作點(diǎn)O關(guān)于DE的對(duì)稱點(diǎn)Q恰好落在內(nèi),則CP的取值范圍為________.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象相交于點(diǎn)、點(diǎn),與軸交于點(diǎn),其中點(diǎn)和點(diǎn)

1)填空:___________,________;

2)求的面積;

3)根據(jù)圖象回答:當(dāng)為何值時(shí),(請(qǐng)直接寫出答案)_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點(diǎn).

(1)求反比例函數(shù)的表達(dá)式

(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)

(3)求△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于,兩點(diǎn),與軸交于點(diǎn),直線經(jīng)過,兩點(diǎn),拋物線的頂點(diǎn)為,對(duì)稱軸與軸交于點(diǎn)

1)求此拋物線的解析式;

2)求的面積;

3)在拋物線上是否存在一點(diǎn),使它到軸的距離為4,若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,AC12cm,BC16cm,D、E分別是ACAB的中點(diǎn),連接DE.點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng),速度為2cm/s;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為4cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t0t4s.解答下列問題:

1)當(dāng)t為何值時(shí),以點(diǎn)E、P、Q為頂點(diǎn)的三角形與△ADE相似?

2)當(dāng)t為何值時(shí),△EPQ為等腰三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案