【題目】某研究性學(xué)習(xí)小組在探究矩形的折紙問(wèn)題時(shí),將一塊直角三角板的直角頂點(diǎn)繞著矩形ABCD(AB<BC)的對(duì)角線(xiàn)交點(diǎn)O旋轉(zhuǎn)(如圖①→②→③),圖中M、N分別為直角三角板的直角邊與矩形ABCD的邊CD、BC的交點(diǎn).
(1)該學(xué)習(xí)小組中一名成員意外地發(fā)現(xiàn):在圖①(三角板的一直角邊與OD重合)中,BN2=CD2+CN2;在圖③(三角板的一直角邊與OC重合)中,CN2=BN2+CD2.請(qǐng)你對(duì)這名成員在圖①和圖③中發(fā)現(xiàn)的結(jié)論選擇其一說(shuō)明理由.
(2)試探究圖②中BN、CN、CM、DM這四條線(xiàn)段之間的關(guān)系,寫(xiě)出你的結(jié)論,并說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】
(1)連接DN,根據(jù)矩形得出OB=OD,根據(jù)線(xiàn)段垂直平分線(xiàn)得出BN=DN,根據(jù)勾股定理求出DN的平方,即可求出答案;
(2)延長(zhǎng)NO交AD于點(diǎn)P,連接PM,MN,證△BNO≌△DPO,推出OP=ON,DP=BN,根據(jù)線(xiàn)段垂直平分線(xiàn)求出PM=MN,根據(jù)勾股定理求出即可.
(1)選①.證明如下:連接DN,
∵四邊形ABCD是矩形,∴OB=OD,
∵∠DON=90°,∴BN=DN,
∵∠BCD=90°,∴DN2=CD2+CN2,∴BN2=CD2+CN2;
(2)延長(zhǎng)NO交AD于點(diǎn)P,連接PM,MN,
∵四邊形ABCD是矩形,∴OD=OB,AD∥BC,∴∠DPO=∠BNO,∠PDO=∠NBO,
在△BON和△DOP中,∵,∴△BON≌△DOP(AAS),∴ON=OP,BN=PD,
∵∠MON=90°,∴PM=MN,
∵∠ADC=∠BCD=90°,∴PM2=PD2+DM2,MN2=CM2+CN2,∴PD2+DM2=CM2+CN2,∴BN2+DM2=CM2+CN2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB經(jīng)過(guò)⊙O上的點(diǎn)C,直線(xiàn)AO與⊙O交于點(diǎn)E和點(diǎn)D,OB與⊙O交于點(diǎn)F,連接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.
(1)求證:①直線(xiàn)AB是⊙O的切線(xiàn);②∠FDC=∠EDC;
(2)求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了加強(qiáng)學(xué)生的交通安全意識(shí),某中學(xué)和交警大隊(duì)聯(lián)合舉行了“我當(dāng)一日小交警”活動(dòng),星期天選派部分學(xué)生到交通路口值勤,協(xié)助交通警察維護(hù)交通秩序.若每一個(gè)路口安排4人,那么還剩下78人;若每個(gè)路口安排8人,那么最后一個(gè)路口不足8人,但不少于4人.求這個(gè)中學(xué)共選派值勤學(xué)生多少人?共有多少個(gè)交通路口安排值勤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,航空母艦始終以40千米/時(shí)的速度由西向東航行,飛機(jī)以800千米/時(shí)的速度從艦上起飛,向西航行執(zhí)行任務(wù),如果飛機(jī)在空中最多能連續(xù)飛行4個(gè)小時(shí),那么它在起飛_____小時(shí)后就必須返航,才能安全停在艦上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為9,將正方形折疊,使頂點(diǎn)D落在BC邊上的點(diǎn)E處,折痕為GH.若BE:EC=2:1,則線(xiàn)段CH的長(zhǎng)是( 。
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時(shí)針?lè)较蛐D(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小東根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=|2x﹣1|的圖象和性質(zhì)進(jìn)行了探究.下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完成:
(1)函數(shù)y=|2x﹣1|的自變量x的取值范圍是 ;
(2)已知:
①當(dāng)x=時(shí),y=|2x﹣1|=0;
②當(dāng)x>時(shí),y=|2x﹣1|=2x﹣1
③當(dāng)x<時(shí),y=|2x﹣1|=1﹣2x;
顯然,②和③均為某個(gè)一次函數(shù)的一部分.
(3)由(2)的分析,取5個(gè)點(diǎn)可畫(huà)出此函數(shù)的圖象,請(qǐng)你幫小東確定下表中第5個(gè)點(diǎn)的坐標(biāo)(m,n),其中m= ;n= ;:
x | … | ﹣2 | 0 |
| 1 | m | … |
y | … | 5 | 1 | 0 | 1 | n | … |
(4)在平面直角坐標(biāo)系xOy中,作出函數(shù)y=|2x﹣1|的圖象;
(5)根據(jù)函數(shù)的圖象,寫(xiě)出函數(shù)y=|2x﹣1|的一條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是工人師傅用同一種材料制成的金屬框架,已知,,,其中的周長(zhǎng)為24cm,,則制成整個(gè)金屬框架所需這種材料的總長(zhǎng)度為( )
A. 45cm B. 48cm C. 51cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
①0是絕對(duì)值最小的有理數(shù);②相反數(shù)大于本身的數(shù)是負(fù)數(shù);③數(shù)軸上原點(diǎn)兩側(cè)的數(shù)互為相反數(shù);是有理數(shù).
A. ①② B. ①③ C. ①②③ D. ②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com