【題目】如圖,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.
(1)求DC的長.
(2)求AB的長.
【答案】
(1)解:∵CD⊥AB于D,且BC=15,BD=9,AC=20
∴∠CDA=∠CDB=90°
在Rt△CDB中,CD2+BD2=CB2,
∴CD2+92=152
∴CD=12
(2)解:在Rt△CDA中,CD2+AD2=AC2
∴122+AD2=202
∴AD=16,
∴AB=AD+BD=16+9=25
【解析】(1)由題意可知三角形CDB是直角三角形,利用已知數(shù)據(jù)和勾股定理直接可求出DC的長;(2)有(1)的數(shù)據(jù)和勾股定理求出AD的長,進(jìn)而求出AB的長.
【考點(diǎn)精析】掌握勾股定理的概念是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)抽取一個(gè)學(xué)習(xí)小組統(tǒng)計(jì)這些同學(xué)本學(xué)期的用筆情況,結(jié)果如下表:
用筆數(shù)(支) | 4 | 5 | 6 | 8 | 9 |
學(xué)生數(shù) | 4 | 4 | 7 | 3 | 2 |
則關(guān)于這20名學(xué)生本學(xué)期的用筆數(shù)量,下列說法錯(cuò)誤的是( ) .
A. 中位數(shù)是6支 B. 平均數(shù)是6支 C. 眾數(shù)是6支 D. 方差是5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)正方體ABCD﹣A1B1C1D1的棱長為1,黑、白兩個(gè)甲殼蟲同時(shí)從點(diǎn)A出發(fā),以相同的速度分別沿棱向前爬行,黑甲殼蟲爬行的路線是AA1→A1D1→…,白甲殼蟲爬行的路線是AB→BB1→…,并且都遵循如下規(guī)則:所爬行的第n+2與第n條棱所在的直線必須是既不平行也不相交(其中n是正整數(shù)).那么當(dāng)黑、白兩個(gè)甲殼蟲各爬行完第2013條棱分別停止在所到的正方體頂點(diǎn)處時(shí),它們之間的距離是( )
A.0
B.1
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠工業(yè)廢氣年排放量為400萬立方米,為改善大氣環(huán)境質(zhì)量,決定分二期投入治理,使廢氣的年排放量減少到256萬立方米,如果每期治理中廢氣減少的百分率相同.求每期減少的百分率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某個(gè)變化過程中,數(shù)值保持不變的量,叫做( 。
A. 函數(shù) B. 變量 C. 常量 D. 自變量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)當(dāng)m取滿足條件的最小整數(shù)時(shí),求方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交點(diǎn)為C,則圖中全等三角形共有( )
A.2對
B.3對
C.4對
D.5對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com