【題目】如圖,長方形ABCD四個頂點的坐標(biāo)分別是A(1,2),B(4,2),C(4, ),D(1, ).

(1)求這個長方形的面積;

(2)將這個長方形向下平移2個單位長度,再向右平移1個單位長度,得到長方形A′B′C′D′,求長方形A′B′C′D′四個頂點的坐標(biāo).

【答案】 (1)3 (2)A′(2,0),B′(5,0),C′(5,- ) ,D′(2,- )

【解析】試題分析:(1)、首先根據(jù)點的坐標(biāo)分別求出ADCD的長度,然后根據(jù)長方形的面積計算法則得出答案;(2)、向下平移幾個單位,則點的縱坐標(biāo)減去幾個單位;向右平移幾個單位,則點的橫坐標(biāo)加上幾個單位,從而得出答案.

試題解析:(1)、AD=2,CD=4-1=3, S=3×=3;

(2)、平移后的點坐標(biāo)為:A′(2,0),B′(5,0),C′(5,- ) ,D′(2,- ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 正方形的邊長為1,點邊上的一個動點(與不重合),以為頂點在所在直線的上方作.

(1)當(dāng)經(jīng)過點時,

請直接填空: 可能,不可能)過點;(圖1僅供分析)

如圖2,上截取,過點作垂直于直線,垂足為點,冊,求證四邊形為正方形.

(2)當(dāng)不過點時,設(shè)交邊,.上存在點,點作垂直直線,垂足為點,使得連接,求四邊形的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個人患了流感,經(jīng)過兩輪傳染后得知第二次被傳染的有420人,如果每輪傳染率都相同,那么每輪傳染中平均一個人傳染了________個人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書畫作品,楊老師從全校30個班中隨機(jī)抽取了4個班(用A,B,C,D表示),對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.

請根據(jù)以上信息,回答下列問題:

(1)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);

(2)請你將條形統(tǒng)計圖補充完整,并估計全校共征集多少件作品?

(3)如果全校征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x22mx5n0有一個非零根n,則2mn的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明.

已知,如圖所示,BCE,AFE是直線,

AB∥CD,∠1=∠2,∠3=∠4.

求證:AD∥BE

證明:∵ AB∥CD (已知)

∴ ∠4 =∠ ( )

∵ ∠3 =∠4 (已知)

∴ ∠3 =∠ ( )

∵ ∠1 =∠2 (已知)

∴ ∠1+∠CAF =∠2+ ∠CAF ( )

即:∠ =∠

∴ ∠3 =∠ ( )

∴ AD∥BE ( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)活動小組為測量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度 的斜坡CD前進(jìn)4米到達(dá)點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),ABBC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°,cos37°,tan37°.計算結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P(2,-3)所在的象限是( )

A. 第一象限B. 第二象限C. 第三象限D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件為必然事件的是(

A.打開電視,正在播放新聞B.買一張電影票,座位號是奇數(shù)號

C.拋一枚骰子,拋到的數(shù)是整數(shù)D.擲一枚質(zhì)地均勻的硬幣,正面朝上

查看答案和解析>>

同步練習(xí)冊答案