【題目】如圖,△ABC是定圓O的內(nèi)接三角形,AD為△ABC的高線,AE平分∠BAC交⊙O于E,交BC于G,連OE交BC于F,連OA,在下列結論中,①CE=2EF,②△ABG∽△AEC,③∠BAO=∠DAC,④ 為常量.其中正確的有 .
【答案】②,③,④
【解析】解:∵∠BCE的度數(shù)不一定為30°, ∴Rt△CEF中,CE=2EF不一定成立,故①錯誤;
∵AE平分∠BAC,
∴∠BAG=∠EAC,
又∵∠ABG=∠AEC,
∴△ABG∽△AEC,故②正確;
如圖所示,延長AO交⊙O于點H,連接BH,
∵AH是⊙O直徑,AD⊥BC,
∴∠ABH=90°,∠ADC=90°,
∴∠H+∠BAH=90°,∠C+∠ACD=90°,
∵∠H=∠ACD,
∴∠BAH=∠DAC,故③正確;
∵∠BAH=∠DAC,∠ABH=∠ADC,
∴△ABH∽△ADC,
∴ = ,即AH= ,
又∵AH為常量,
∴ 為常量,故④正確;
故答案為:②,③,④.
根據(jù)圓周角定理以及相似三角形的判定方法,即可得出△ABG∽△AEC,△ABH∽△ADC,再根據(jù)相似三角形的對應邊成比例即可得出結論.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為1,它的六條對角線又圍成一個正六邊形A2B2C2D2E2F2 , 如此繼續(xù)下去,則正六邊形A4B4C4D4E4F4的面積是.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,和都是邊長為1的等邊三角形.
四邊形ABCD是菱形嗎?為什么?
如圖2,將沿射線BD方向平移到的位置,則四邊形是平行四邊形嗎?為什么?
在移動過程中,四邊形有可能是矩形嗎?如果是,請求出點B移動的距離寫出過程;如果不是,請說明理由圖3供操作時使用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,△ABC在平面直角坐標系中的位置如圖所示.
①畫出與△ABC關于y軸對稱的△A1B1C1 , 求點C1的坐標。
②以原點O為位似中心,在第四象限畫一個△A2B2C2 , 使它與△ABC位似,并且△A2B2C2與△ABC的相似比為2:1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是長方形紙袋,將紙袋沿EF折疊成圖2,再沿BF折疊成圖3,若∠DEF=α,用α表示圖3中∠CFE的大小為 _________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,點A、B在x軸上,AB⊥BC,AO=OB=2,BC=3
(1)寫出點A、B、C的坐標.
(2)如圖②,過點B作BD∥AC交y軸于點D,求∠CAB+∠BDO的大。
(3)如圖③,在圖②中,作AE、DE分別平分∠CAB、∠ODB,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于O,OD平分∠AOF,OE⊥CD于點O,∠1=50°,求∠BOC、∠BOF的度數(shù).
解:∵OE⊥CD( ),
∴∠DOE=_____°( ),
∵∠1=50°( ),
∴∠AOD=∠________-∠________=________°,
∵∠BOC與∠AOD為_______角(____________),
∴∠BOC=∠________=∠_________°(_____________),
∵OD平分∠AOF(______________),
且∠AOD=____________°(______________),
∴∠AOF=2∠__________=________°( ),
∵∠BOF+∠AOF=______°( ),
∴∠BOF=______°-∠AOF=_________°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com