【題目】如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點,tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點C,與AB交于點D,若△COD的面積為16,則k的值等于_____.
【答案】
【解析】
易證S菱形ABCO=2S△CDO,再根據(jù)tan∠AOC的值即可求得菱形的邊長,即可求得點C的坐標(biāo),代入反比例函數(shù)即可解題.
作DE∥AO,CF⊥AO,設(shè)CF=4x,
∵四邊形OABC為菱形,
∴AB∥CO,AO∥BC,
∵DE∥AO,
∴∴S△ADO=S△DEO,
同理S△BCD=S△CDE,
∵S菱形ABCO=S△ADO+S△DEO+S△BCD+S△CDE,
∴S菱形ABCO=2(S△DEO+S△CDE)=2S△CDO=32,
∵tan∠AOC=
∴OF=3x,
∴
∴OA=OC=5x,
∵S菱形ABCO=AOCF,解得:
∴
∴點C坐標(biāo)為
∵反比例函數(shù)的圖象經(jīng)過點C,
∴代入點C得:
故答案為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉(zhuǎn)到△DCF的位置,并延長BE交DF于點G.
(1)求證:△BDG∽△DEG;
(2)若EGBG=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,AB=AC,D、E分別在邊AB、AC上,且滿足AD=AE.下列結(jié)論中:①;②AO平分∠BAC;③OB=OC;④AO⊥BC;⑤若,則;其中正確的有( )
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的代數(shù)式,設(shè)代數(shù)式的值.
下表中列出了當(dāng)分別取-1,0,1,2,3,4,5,…,,,…時對應(yīng)的值.
… | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … | … | |||
… | 10 | 5 | 2 | 1 | 2 | 5 | … | … |
(1)表中的值為 ;
(2)當(dāng) 時,有最小值,最小值是 ;
(3)比較與的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.
(1)判斷∠D是否是直角,并說明理由.
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線1經(jīng)過點A(0,﹣1)與點P(2,3).
(1)求直線1的表達(dá)式;
(2)若在y軸上有一點B,使△APB的面積為5,求點B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線y=2x+3與直線y=﹣2x﹣1.
(1)求兩直線與y軸交點A,B的坐標(biāo);
(2)求兩直線交點C的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD中,∠ABC=∠ADC=90°,AD=CD.
(1)求證:BD平分∠ABC;
(2)如圖2,點E、F分別在AB、BC上,連接EF,M是EF的中點,過M作EF的垂線交BD于P.求證:AE+CF=PD;
(3)如圖3,在(2)條件下,連AF,若AE=CF,∠DAF=2∠AFE=2α,AF=13,BC=12,(BC>AB).求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com