【題目】若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,且其中一個等腰三角形的底角是另一個等腰三角形底角的2倍,我們把這條對角線叫做這個四邊形的黃金線,這個四邊形叫做黃金四邊形.
(1)如圖1,在四邊形ABCD中,AB=AD=DC,對角線AC,BD都是黃金線,且AB<AC,CD<BD,求四邊形ABCD各個內(nèi)角的度數(shù);
(2)如圖2,點B是弧AC的中點,請在⊙O上找出所有的點D,使四邊形ABCD的對角線AC是黃金線(要求:保留作圖痕跡);
(3)在黃金四邊形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度數(shù).

【答案】
(1)解:∵在四邊形ABCD中,對角線AC是黃金線,

∴△ABC是等腰三角形,

∵AB<AC,

∴AB=BC或AC=BC,

①當(dāng)AB=BC時,

∵AB=AD=DC,

∴AB=BC=AD=DC,

又∵AC=AC,

∴△ABC≌△ADC,

此種情況不符合黃金四邊形定義,

②AC=BC,

同理,BD=BC,

∴AC=BD=BC,易證得△ABD≌△DAC,△CAB≌△BDC,

∴∠DAC=∠DCA=∠ABD=∠ADB,∠BDC=∠BCD=∠CAB=∠CBA,

且∠DCA<∠DCB,

∴∠DAC<∠CAB

又由黃金四邊形定義知:∠CAB=2∠DAC,

設(shè)∠DAC=∠DCA=∠ABD=∠ADB=x°,

則∠BDC=∠BCD=∠CAB=∠CBA=2x°,

∴∠DAB=∠ADC=3x°,

而四邊形的內(nèi)角和為360°,

∴∠DAB=∠ADC=108°,∠BCD=∠CBA=72°,

答:四邊形ABCD各個內(nèi)角的度數(shù)分別為108°,72°,108°,72°.


(2)解:由題意作圖為:


(3)解:∵AB=BC,∠BAC=30°,

∴∠BCA=∠BAC=30°,∠ABC=120°,

ⅰ)當(dāng)AC為黃金線時,

∴△ACD是等腰三角形,

∵AB=BC=CD,AC>BC,

∴AD=CD或AD=AC,

當(dāng)AD=CD時,則AB=BC=CD=AD,

又∵AC=AC,

∴△ABC≌△ADC,如圖3,此種情況不符合黃金四邊形定義,

∴AD≠CD,

當(dāng)AD=AC時,由黃金四邊形定義知,∠ACD=∠D=15°或60°,

此時∠BAD=180°(不合題意,舍去)或90°(不合題意,舍去);

ⅱ)當(dāng)BD為黃金線時,

∴△ABD是等腰三角形,

∵AB=BC=CD,

∴∠CBD=∠CDB,

①當(dāng)AB=AD時,△BCD≌△BAD,

此種情況不符合黃金四邊形定義;

②當(dāng)AB=BD時,AB=BD=BC=CD,

∴△BCD是等邊三角形,

∴∠CBD=60°,

∴∠A=30°或120°(不合題意,舍去),

∴∠ABC=180°(不合題意,舍去),

此種情況也不符合黃金四邊形定義;

③當(dāng)AD=BD時,設(shè)∠CBD=∠CDB=y°,則∠ABD=∠BAD=(2y)°或 ,

∵∠ABC=∠CBD+∠ABD=120°,

當(dāng)∠ABD=2y°時,y=40,

∴∠BAD=2y=80°;

當(dāng) 時,y=80,

;

綜上所述:∠BAD的度數(shù)為40°,80°.


【解析】(1))先由對角線AC是黃金線,可知△ABC是等腰三角形,分兩種情況:①AB=BC,②AC=BC,第一種情況不成立,②設(shè)∠DAC=∠DCA=∠ABD=∠ADB=x°,則∠BDC=∠BCD=∠CAB=∠CBA=2x°,∠DAB=∠ADC=3x°,根據(jù)四邊形內(nèi)角和列等式可得x的值,計算各角的度數(shù);(2)①以A為圓心,AC為半徑畫弧,交圓O于D1 , ②以C為圓心,AC為半徑畫弧,交圓O于D2 , ③連接AD1、CD1、AD2、CD2;(3)先根據(jù)∠BAC=30°,計算∠ABC=120°,分情況進(jìn)行討論:。┊(dāng)AC為黃金線時,則AD=CD或AD=AC,根據(jù)等腰三角形的性質(zhì)及黃金四邊形定義進(jìn)行計算即可;ⅱ)當(dāng)BD為黃金線時,分三種情況: ①當(dāng)AB=AD時;②當(dāng)AB=BD時,③當(dāng)AD=BD時,分別討論即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點F是DA延長線的一點,AC平分∠FAB交⊙O于點C,過點C作CE⊥DF,垂足為點E.

(1)求證:CE是⊙O的切線;
(2)若AE=1,CE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市重慶路水果市場某水果店購進(jìn)甲、乙兩種水果.已知1千克甲種水果的進(jìn)價比1千克乙種水果的進(jìn)價多4元,購進(jìn)2千克甲種水果與1千克乙種水果共需20元.
(1)求甲種水果的進(jìn)價為每千克多少元?
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),甲種水果每天銷售量y(千克)與售價m(元/千克)之間滿足如圖所示的函數(shù)關(guān)系,求y與m之間的函數(shù)關(guān)系;

(3)在(2)的條件下,當(dāng)甲種水果的售價定為多少元時,才能使每天銷售甲種水果的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E正方形ABCD外一點,點F是線段AE上一點,△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.
(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)圖象過點(﹣1,0),頂點為(1,2),則結(jié)論:
①abc>0;②x=1時,函數(shù)最大值是2;③4a+2b+c>0;④2a+b=0;⑤2c<3b.
其中正確的結(jié)論有( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寧波軌道交通4號線已開工建設(shè),計劃2020年通車試運營.為了了解鎮(zhèn)民對4號線地鐵票的定價意向,某鎮(zhèn)某校數(shù)學(xué)興趣小組開展了“你認(rèn)為寧波4號地鐵起步價定為多少合適”的問卷調(diào)查,并將調(diào)查結(jié)果整理后制成了如下統(tǒng)計圖,根據(jù)圖中所給出的信息解答下列問題:

(1)求本次調(diào)查中該興趣小組隨機(jī)調(diào)查的人數(shù);
(2)請你把條形統(tǒng)計圖補(bǔ)充完整;
(3)如果在該鎮(zhèn)隨機(jī)咨詢一位居民,那么該居民支持“起步價為2元或3元”的概率是
(4)假設(shè)該鎮(zhèn)有3萬人,請估計該鎮(zhèn)支持“起步價為3元”的居民大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中,△ABC的頂點均在格點上,點A、B的坐標(biāo)分別是A(4,3)、B(4,1),把△ABC繞點C逆時針旋轉(zhuǎn)90°后得到△A1B1C.

(1)畫出△A1B1C,直接寫出點A1、B1的坐標(biāo);
(2)求在旋轉(zhuǎn)過程中,點B所經(jīng)過的路徑的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年我市某公司分兩次采購了一批大蒜,第一次花費40萬元,第二次花費60萬元.已知第一次采購時每噸大蒜的價格比去年的平均價格上漲了500元,第二次采購時每噸大蒜的價格比去年的平均價格下降了500元,第二次的采購數(shù)量是第一次采購數(shù)量的兩倍.
(1)試問去年每噸大蒜的平均價格是多少元?
(2)該公司可將大蒜加工成蒜粉或蒜片,若單獨加工成蒜粉,每天可加工8噸大蒜,每噸大蒜獲利1000元;若單獨加工成蒜片,每天可加工12噸大蒜,每噸大蒜獲利600元.由于出口需要,所有采購的大蒜必需在30天內(nèi)加工完畢,且加工蒜粉的大蒜數(shù)量不少于加工蒜片的大蒜數(shù)量的一半,為獲得最大利潤,應(yīng)將多少噸大蒜加工成蒜粉?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠ABC=60°,對角線AC、BD相交于點O,將對角線AC所在的直線繞點O順時針旋轉(zhuǎn)角α(0°<α<90°)后得直線l,直線l與AD、BC兩邊分別相交于點E和點F.

(1)求證:△AOE≌△COF;
(2)當(dāng)α=30°時,求線段EF的長度.

查看答案和解析>>

同步練習(xí)冊答案