【題目】如圖,小山坡上有一根垂直于地面的電線桿,小明從地面上的A處測得電線桿頂端點的仰角是45°,后他正對電線桿向前走6米到達B處,測得電線桿頂端點和電線桿底端D點的仰角分別是60°30°.求電線桿的高度(結(jié)果保留根號)

【答案】CD=

【解析】

延長CDAB于點E,設(shè)DE=x,在直角△BDE和直角△BCE中,根據(jù)30°角的直角三角形的性質(zhì)利用x表示出CEBE,根據(jù)等腰直角三角形得AE=CE即可列出方程求得x的值,根據(jù)CD=CE-DE即可求得CD的長度.

解:如圖,延長CDAB于點E

∵∠DBE=30°∴設(shè)DE=x,BE=,

∵∠CBE=60°CE=

∵∠CBE=45°

解得:

CD=CE-DE=2.

故答案為:CD= .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AC=n+1(其中n為正整數(shù)),點B在線段AC上,在線段AC同側(cè)作正方形ABMN及正方形BCEF,連接AM、ME、EA得到AME.當(dāng)AB=1時,AME的面積記為S1;當(dāng)AB=2時,AME的面積記為S2;當(dāng)AB=3時,AME的面積記為

S3;則S3﹣S2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分5分)如圖,小明在大樓30米高

(即PH30米)的窗口P處進行觀測,測得山

坡上A處的俯角為15°,山腳B處的俯角為

60°,已知該山坡的坡度i(即tan∠ABC)為1

,點P、H、B、C、A在同一個平面上.點

H、BC在同一條直線上,且PH⊥HC

(1)山坡坡角(即∠ABC)的度數(shù)等于 度;

(2)AB兩點間的距離(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.732).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC=4cm,B=30°,點P從點B出發(fā),以cm/s的速度沿BC方向運動到點C停止,同時點Q從點B出發(fā),以1cm/s的速度沿BA﹣AC方向運動到點C停止,若△BPQ的面積為y(cm2),運動時間為x(s),則下列最能反映yx之間函數(shù)關(guān)系的圖象是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象過點A(3,0),C(﹣1,0).

(1)求二次函數(shù)的解析式;

(2)如圖,點P是二次函數(shù)圖象的對稱軸上的一個動點,二次函數(shù)的圖象與y軸交于點B,當(dāng)PB+PC最小時,求點P的坐標;

(3)在第一象限內(nèi)的拋物線上有一點Q,當(dāng)△QAB的面積最大時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于O

1)作B的平分線與O交于點D(用尺規(guī)作圖,不用寫作法但要保留作圖痕跡);

2)在(1)中,連接AD,BAC=60°,C=66°,DAC的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DBC的中點,過D點的直線GFACF,交AC的平行線BGG點,DE⊥DF,交AB于點E,連結(jié)EG、EF

1)求證:BGCF

2)請你判斷BE+CFEF的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A﹣1,0)、C0,3),與x軸交于另一點B,拋物線的頂點為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線lAB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設(shè)直線PB與直線AC交于點E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點DAB上方,且CDBP時,求證:PC=AC;

(3)在點P的運動過程中

①當(dāng)點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出BDE的面積.

查看答案和解析>>

同步練習(xí)冊答案