(2006•青海)如圖,在△ABD和△ACE中,F(xiàn)、G分別是AC和DB、AB和EC的交點.現(xiàn)有如下4個論斷:①AB=AC;②AD=AE;③AF=AG;④AD⊥BD,AE⊥CE.以其中3個論斷為題設(shè),填入下面的已知欄中,一個論斷為結(jié)論,填入下面的求證欄中,組成一個真命題,并寫出證明過程.
已知:①AB=AC;③AF=AG;④AD⊥BD,AE⊥CE
求證:②AD=AE
證明:

【答案】分析:本題是一個條件開放題目,它們組合不唯一,如可①③④?②或②③④?①等.
解答:證明:∵AB=AC,AF=AG,∠BAF=∠CAG,
∴△BAF≌△CAG,
∴∠B=∠C,
∵AD⊥BD,AE⊥CE,
∴∠E=∠D=90°,
又∵AB=AC,∠B=∠C,
∴△AEC≌△ADB(AAS),
∴AD=AE.
點評:本題考查了全等三角形的判斷和性質(zhì),常用的判斷方法為:SAS,SSS,AAS,ASA.常用到的性質(zhì)是:對應角相等,對應邊相等.有時還需要證“兩步”全等.在證明中還要注意圖形中隱藏條件的挖掘如:本題中的公共角∠BAC.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2006年青海省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•青海)如圖,已知y=x2-ax+a+2與x軸交于A,B兩點,與y軸交于點D(0,8),直線CD平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從點C出發(fā),沿C?D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A?B運動,連接PQ,CB,設(shè)點P的運動時間t秒.(0<t<2).
(1)求a的值;
(2)當t為何值時,PQ平行于y軸;
(3)當四邊形PQBC的面積等于14時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2006•青海)如圖,已知y=x2-ax+a+2與x軸交于A,B兩點,與y軸交于點D(0,8),直線CD平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從點C出發(fā),沿C?D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A?B運動,連接PQ,CB,設(shè)點P的運動時間t秒.(0<t<2).
(1)求a的值;
(2)當t為何值時,PQ平行于y軸;
(3)當四邊形PQBC的面積等于14時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年吉林省中考數(shù)學試卷(解析版) 題型:解答題

(2006•青海)如圖,已知y=x2-ax+a+2與x軸交于A,B兩點,與y軸交于點D(0,8),直線CD平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從點C出發(fā),沿C?D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A?B運動,連接PQ,CB,設(shè)點P的運動時間t秒.(0<t<2).
(1)求a的值;
(2)當t為何值時,PQ平行于y軸;
(3)當四邊形PQBC的面積等于14時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年青海省中考數(shù)學試卷(課標卷)(解析版) 題型:填空題

(2006•青海)如下圖,直線a∥b,則∠A=    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學模擬試卷38(朝暉初中 裘曉麗 周光華)(解析版) 題型:選擇題

(2006•青海)如圖DE是△ABC的中位線,F(xiàn)是DE的中點,CF的延長線交AB于點G,則AG:GD等于( )

A.2:1
B.3:1
C.3:2
D.4:3

查看答案和解析>>

同步練習冊答案