【題目】如圖,已知四邊形ABCD中,對角線BD平分∠ABC,∠ACB=72°,∠ABC=50°,并且∠BAD+∠CAD=180°,那么∠ADC的度數(shù)為(

A.62°
B.65°
C.68°
D.70°

【答案】B
【解析】 解:延長BA和BC,過D點作DE⊥BA于E點,過D點作DF⊥BC于F點,
∵BD是∠ABC的平分線
在△BDE與△BDF中,
,
∴△BDE≌△BDF,
∴DE=DF,
又∵∠BAD+∠CAD=180°,
∠BAD+∠EAD=180°,
∴∠CAD=∠EAD,
∴AD為∠EAC的平分線,
過D點作DG⊥AC于G點,
在RT△CDG與RT△CDF中,
,
∴RT△ADE≌RT△ADG,
∴DE=DG,
∴DG=DF.
在RT△CDG與RT△CDF中,
,
∴RT△CDG≌RT△CDF,
∴CD為∠ACF的平分線
∠ACB=72°
∴∠DCA=54°,
△ABC中,
∵∠ACB=72°,∠ABC=50°,
∴∠BAC=180°﹣72°﹣50°=58°,
∴∠DAC= =61°,
∴∠ADC=180°﹣∠DAC﹣∠DCA=180°﹣61°﹣54°=65°.
故選:B.

【考點精析】本題主要考查了多邊形內(nèi)角與外角的相關(guān)知識點,需要掌握多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,將△ABC沿DE折疊,使點C與點A重合,則AE的長等于(

A.4cm
B. cm
C. cm
D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題:①直徑是弦;②經(jīng)過三個點一定可以作圓;③三角形的外心到三角形各頂點的距離都相等;④兩個半圓是等弧。其中正確的有 (  

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°
(1)求證:AE∥CD;
(2)求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).
(1)圖2中的陰影部分的面積為;
(2)觀察圖2請你寫出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是
(3)根據(jù)(2)中的結(jié)論,若x+y=7,xy= ,則x﹣y=;
(4)實際上通過計算圖形的面積可以探求相應(yīng)的等式.根據(jù)圖3,寫出一個因式分解的等式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9的平方根是(
A.3
B.﹣3
C.±3
D.81

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在第1個△A1BC中,∠B=30°,A1B=CB;在邊A1B上任取一點D,延長CA1到A2 , 使A1A2=A1D,得到第2個△A1A2D;在邊A2D上任取一點E,延長A1A2到A3 , 使A2A3=A2E,得到第3個△A2A3E,…按此做法繼續(xù)下去,則第n個三角形中以An為頂點的內(nèi)角度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】m+n=7,mn=12,則m2+n2的值是(  )

A. 1 B. 25 C. 2 D. ﹣10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示的方向運動,第1次從原點運動到(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過2017次運動后,動點P的坐標為

查看答案和解析>>

同步練習(xí)冊答案