【題目】已知關(guān)于x的方程x2﹣(m+n+1)x+m(n≥0)的兩個(gè)實(shí)數(shù)根為α、β,且α≤β.
(1)試用含α、β的代數(shù)式表示m和n;
(2)求證:α≤1≤β;
(3)若點(diǎn)P(α,β)在△ABC的三條邊上運(yùn)動(dòng),且△ABC頂點(diǎn)的坐標(biāo)分別為A(1,2)、B(,1)、C(1,1),問是否存在點(diǎn)P,使m+n=?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】(1)m=αβ,n=α+β﹣αβ﹣1;(2)詳見解析;(3)詳見解析.
【解析】分析:(1)、根據(jù)韋達(dá)定理即可得出答案;(2)、首先求出(1﹣α)(1﹣β)的值為-n,從而根據(jù)n的取值范圍得出答案;(3)、先根據(jù)條件確定動(dòng)點(diǎn)所在的邊,然后再確定點(diǎn)的坐標(biāo).
詳解:解:(1)∵α、β為方程x2﹣(m+n+1)x+m=0(n≥0)的兩個(gè)實(shí)數(shù)根,
∴判別式△=(m+n+1)2﹣4n=(m+n﹣1)2+4n≥0,且α+β=m+n+1,αβ=m,
于是m=αβ,n=α+β﹣m﹣1=α+β﹣αβ﹣1;
(2)∵(1﹣α)(1﹣β)=1﹣(α+β)+αβ=﹣n≤0(n≥0),又α≤β,∴α≤1≤β;
(3)若使m+n成立,只需α+β=m+n+1=,
①當(dāng)點(diǎn)M(α,β)在BC邊上運(yùn)動(dòng)時(shí),由B(,1),C(1,1),得≤α≤1,β=1,
而α=﹣β=﹣1=>1,故在BC邊上存在滿足條件的點(diǎn),其坐標(biāo)為(,1)所以不符合題意舍去; 即在BC邊上不存在滿足條件的點(diǎn)
②當(dāng)點(diǎn)M(α,β)在AC邊上運(yùn)動(dòng)時(shí),由A(1,2),C(1,1),得α=1,1≤β≤2,
此時(shí)β=﹣α=﹣1=,又因?yàn)?<<2,故在AC邊上存在滿足條件的點(diǎn),其坐標(biāo)為(1, );
③當(dāng)點(diǎn)M(α,β)在AB邊上運(yùn)動(dòng)時(shí),由A(1,2),B(,1),得≤α≤1,1≤β≤2,
由平面幾何知識(shí)得, ,于是β=2α,由,解得α=,β=,
又因?yàn)?/span><<1,1<<2,故在AB邊上存在滿足條件的點(diǎn),其坐標(biāo)為(, ).
綜上所述,當(dāng)點(diǎn)M(α,β)在△ABC的三條邊上運(yùn)動(dòng)時(shí),存在點(diǎn)(1, )和點(diǎn)(, ),使m+n=成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩種糖果,原價(jià)分別為每千克a元和b元.根據(jù)調(diào)查,將兩種糖果按甲種糖果x千克與乙種糖果y千克的比例混合,取得了較好的銷售效果.現(xiàn)在糖果價(jià)格有了調(diào)整:甲種糖果單價(jià)下降15%,乙種糖果單價(jià)上漲20%,但按原比例混合的糖果單價(jià)恰好不變,則等于( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=x2+bx+c的圖像與x 軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,OB=OC.點(diǎn)D在函數(shù)圖像上,CD//x軸,且CD=2,直線l 是拋物線的對稱軸,E是拋物線的頂點(diǎn).
(1)求b、c 的值;
(2)如圖①,連接BE,線段OC 上的點(diǎn)F 關(guān)于直線l 的對稱點(diǎn)F′ 恰好在線段BE上,求點(diǎn)F的坐標(biāo);
(3)如圖②,動(dòng)點(diǎn)P在線段OB上,過點(diǎn)P 作x 軸的垂線分別與BC交于點(diǎn)M,與拋物線交于點(diǎn)N.試問:拋物線上是否存在點(diǎn)Q,使得△PQN與△APM的面積相等,且線段NQ的長度最?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,說明理由.
圖 ① 圖②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程.
若是方程的一個(gè)根,求的值和方程的另一根;
當(dāng)為何實(shí)數(shù)時(shí),方程有實(shí)數(shù)根;
若,是方程的兩個(gè)根,且,試求實(shí)數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:CE是△ABC的外角∠ACD的平分線,且CE交BA的延長線于點(diǎn)E.
(1)如圖1,求證∠BAC=∠B+2∠E;
(2)如圖2,過點(diǎn)A作AF⊥BC,垂足為點(diǎn)F,若∠DCE=2∠CAF,∠B=2∠E,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班級(jí)同學(xué)從學(xué)校出發(fā)去太陽島研學(xué)旅行,一部分乘坐大客車先出發(fā),余下的同學(xué)20min后乘坐小轎車沿同一路線出行,大客車中途停車等候5min,小轎車趕上來之后,大客車以出發(fā)時(shí)速度的繼續(xù)行駛,小轎車保持原速度不變.小轎車司機(jī)因路線不熟錯(cuò)過了景點(diǎn)入口,在駛過景點(diǎn)入口6 km時(shí),原路提速返回,恰好與大客車同時(shí)到達(dá)景點(diǎn)入口.兩車距學(xué)校的路程S(單位:km)和行駛時(shí)間t(單位:min)之間的函數(shù)關(guān)系如圖所示.
請結(jié)合圖象解決下面問題:
(1)學(xué)校到景點(diǎn)的路程為________km,________;
(2)在小轎車司機(jī)駛過景點(diǎn)入口時(shí),大客車離景點(diǎn)入口還有多遠(yuǎn)?
(3)小轎車司機(jī)到達(dá)景點(diǎn)入口時(shí)發(fā)現(xiàn)本路段限速80 km/h,請你幫助小轎車司機(jī)計(jì)算折返時(shí)是否超速?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA=2,以點(diǎn)A為圓心,1為半徑畫⊙A與OA的延長線交于點(diǎn)C,過點(diǎn)A畫OA的垂線,垂線與⊙A的一個(gè)交點(diǎn)為B,連接BC
(1)線段BC的長等于 ;
(2)請?jiān)趫D中按下列要求逐一操作,并回答問題:
①以點(diǎn) 為圓心,以線段 的長為半徑畫弧,與射線BA交于點(diǎn)D,使線段OD的長等于;
②連OD,在OD上畫出點(diǎn)P,使OP得長等于,請寫出畫法,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,多項(xiàng)式的因式分解就是將一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式.通過因式分解,我們常常將一個(gè)次數(shù)比較高的多項(xiàng)式轉(zhuǎn)化成幾個(gè)次數(shù)較低的整式的積,來達(dá)到降次化簡的目的.這個(gè)思想可以引領(lǐng)我們解決很多相對復(fù)雜的代數(shù)問題.
例如:方程就可以這樣來解:
解:原方程可化為:
所以或者
解方程得:
所以原方程的解:,
根據(jù)你的理解,結(jié)合所學(xué)知識(shí),解決以下問題:
(1)解方程:;
(2)已知的三邊為4、x、y,請你判斷代數(shù)式的值的符號(hào).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC=∠DCB,添加一個(gè)條件使△ABC≌△DCB,下列添加的條件不能使△ABC≌△DCB的是( )
A. ∠A=∠D B. AB=DC C. AC=DB D. OB=OC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com