如圖1,已知梯形OABC,拋物線分別過點O(0,0)、A(2,0)、B(6,3).
(1)直接寫出拋物線的對稱軸、解析式及頂點M的坐標;
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時向上平移,分別交拋物線于點O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當S=36時點A1的坐標;
(3)在圖1中,設(shè)點D坐標為(1,3),動點P從點B出發(fā),以每秒1個單位長度的速度沿著線段BC運動,動點Q從點D出發(fā),以與點P相同的速度沿著線段DM運動.P、Q兩點同時出發(fā),當點Q到達點M時,P、Q兩點同時停止運動.設(shè)P、Q兩點的運動時間為t,是否存在某一時刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

【答案】分析:(1)已知了O、A、B的坐標,可用待定系數(shù)法求出拋物線的解析式,進而可得到其對稱軸方程和頂點M的坐標.
(2)在兩條直線平移的過程中,梯形的上下底發(fā)生了改變,但是梯形的高沒有變化,仍為3,即y2-y1=3,可根據(jù)拋物線的解析式,用x1、x2表示出y1、y2,然后聯(lián)立y2-y1=3,可得到第一個關(guān)于x1、x2的關(guān)系式①;在兩條直線平移過程中,拋物線的對稱軸沒有變化,可用x1、x2以及拋物線的對稱軸解析式表示出梯形上下底的長,進而可得到梯形面積的表達式,這樣可得到另外一個x1、x2的關(guān)系式②,聯(lián)立兩個關(guān)系式,即可得到關(guān)于(x2-x1)與S的關(guān)系式③,將S=36代入②③的關(guān)系式中,即可列方程組求得x1、x2的值,進而可求出A點的坐標.
(3)要解答此題,首先要弄清幾個關(guān)鍵點:
一、當PQ∥AB時,設(shè)直線AB與拋物線對稱軸的交點為E,可得△DPQ∽△DBE,可用t表示出DP、DQ的長,而E點坐標易求得,根據(jù)相似三角形所得比例線段,即可得到此時t的值即t=;
二、當P、Q都停止運動時,顯然BC>DM,所以此時t=DM÷1=3
可分兩種情況討論:
①當0<t<時,設(shè)直線PQ與直線AB的交點為F,與x軸的交點為G;由題意知△FQE∽△FAG,得∠FGA=∠FEQ,由于BC∥x軸,則∠DPQ=∠FGA=∠FEQ,由此可證得△DPQ∽△DEB,DB、DE的長已求得,可用t表示出DP、DQ的長,根據(jù)相似三角形所得比例線段,即可求得此時t的值;
②當<t<3時,方法同①;
在求得t的值后,還要根據(jù)各自的取值范圍將不合題意的解舍去.
解答:解:(1)對稱軸:直線x=1,
解析式:y=x2-x,
頂點坐標:M(1,-).

(2)由題意得y2-y1=3,y2-y1=--+=3,
得:(x2-x1)[(x2+x1)-]=3①,
s==3(x1+x2)-6,
得:x1+x2=+2②,
把②代入①并整理得:x2-x1=(S>0),
當s=36時,
解得:,
把x1=6代入拋物線解析式得y1=3,
∴點A1(6,3).

(3)存在
易知直線AB的解析式為y=x-,可得直線AB與對稱軸的交點E的坐標為(1,-),
∴BD=5,DE=,DP=5-t,DQ=t,
當PQ∥AB時,=,=,
得t=
下面分兩種情況討論:設(shè)直線PQ與直線AB、x軸的交點分別為點F、G;
①當0<t<時,如圖1-1;
∵△FQE∽△FAG,∴∠FGA=∠FEQ,
∴∠DPQ=∠DEB;易得△DPQ∽△DEB,
=,
=
得t=,
∴t=(舍去);
②當<t<3時,如圖1-2;
∵△FQE∽△FAG,
∴∠FAG=∠FQE,
∵∠DQP=∠FQE,∠FAG=∠EBD,
∴∠DQP=∠DBE,易得△DPQ∽△DEB,
=
=,
∴t=
∴當t=秒時,使直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似.

點評:本題是二次函數(shù)的綜合類試題,涉及到:二次函數(shù)解析式的確定、等腰梯形的性質(zhì)、圖形面積的求法、相似三角形的判定和性質(zhì)等重要知識;在(3)題中能夠正確的畫出圖形,并準確的找到所求的三角形是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知梯形OABC,拋物線分別過點O(0,0)、A(2,0)、B(6,3).
(1)直接寫出拋物線的對稱軸、解析式及頂點M的坐標;
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時向上平移,分別交拋物線于點O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當S=36時點A1的坐標;
(3)在圖1中,設(shè)點D坐標為(1,3),動點P從點B出發(fā),以每秒1個單位長度的速度沿著線段BC運動,動點Q從點D出發(fā),以與點P相同的速度沿著線段DM運動.P、Q兩點同時出發(fā),當點Q到達點M時,P、Q兩點同時停止運動.設(shè)P、Q兩點的運動時間為t,是否存在某一時刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知梯形OABC,拋物線分別過點O(0,0)、A(2,0)、B(6,3).

(1)直接寫出拋物線的對稱軸、解析式及頂點M的坐標;

(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時向上平移,分別交拋物線于點O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、 B1的坐標分別為 (x1,y1)、(x2y2).用含S的代數(shù)式表示,并求出當S=36時點A1的坐標;

(3)在圖1中,設(shè)點D坐標為(1,3),動點P從點B出發(fā),以每秒1個單位長度的速度沿著線段BC運動,動點Q從點D出發(fā),以與點P相同的速度沿著線段DM運動.P、Q兩點同時出發(fā),當點Q到達點M時,P、Q兩點同時停止運動.設(shè)P、Q兩點的運動時間為t,是否存在某一時刻t,使得直線PQ、直線AB軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

                                                    

                                                    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知梯形OABC,拋物線分別過點O(0,0)、A(2,0)、B(6,3).

(1)直接寫出拋物線的對稱軸、解析式及頂點M的坐標;

(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時向上平移,分別交拋物線于點O1A1、C1B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1 B1的坐標分別為 (x1,y1)、(x2,y2).用含S的代數(shù)式表示x2x1,并求出當S=36時點A1的坐標;

(3)在圖1中,設(shè)點D的坐標為(1,3),動點P從點B出發(fā),以每秒1個單位長度的速度沿著線段BC運動,動點Q從點D出發(fā),以與點P相同的速度沿著線段DM運動.P、Q兩點同時出發(fā),當點Q到達點M時,P、Q兩點同時停止運動.設(shè)PQ兩點的運動時間為t,是否存在某一時刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年湖北省天門市麻洋中學(xué)中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

如圖1,已知梯形OABC,拋物線分別過點O(0,0)、A(2,0)、B(6,3).
(1)直接寫出拋物線的對稱軸、解析式及頂點M的坐標;
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時向上平移,分別交拋物線于點O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當S=36時點A1的坐標;
(3)在圖1中,設(shè)點D坐標為(1,3),動點P從點B出發(fā),以每秒1個單位長度的速度沿著線段BC運動,動點Q從點D出發(fā),以與點P相同的速度沿著線段DM運動.P、Q兩點同時出發(fā),當點Q到達點M時,P、Q兩點同時停止運動.設(shè)P、Q兩點的運動時間為t,是否存在某一時刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案