【題目】如圖,在平行四邊形ABCD中,點E是邊BC的中點,DE的延長線與AB的延長線相交于點F.

(1)求證:△CDE≌△BFE;

(2)試連接BD、CF,判斷四邊形CDBF的形狀,并證明你的結(jié)論

【答案】(1)證明見解析;(2四邊形CDBF是平行四邊形,證明見解析.

【解析】試題分析:(1)用AAS證明CDE≌△BFE;

(2) 根據(jù)全等三角形的對應(yīng)邊相等,得DE=FE,由對角線互相平分的四邊形是平行四邊形證得四邊形DBFC為平行四邊形.

試題解析:(1)四邊形ABCD是平行四邊形,ABCDAFCD∴∠F=CDEBE=CE,BEF=CEDCDE≌△BFE(2)由(1)知:CDE≌△BFE

DE=FEBE=CE

四邊形DBFC為平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知Rt△ABC,∠ABC=90°,以直角邊AB為直徑作⊙O,交斜邊AC于點D,連接BD.
(1)若AD=3,BD=4,求邊BC的長;
(2)取BC的中點E,連接ED,試證明ED與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,OA=1.先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2015次,點A的落點依次為A1 , A2 , A3 , …,則A2015的坐標(biāo)為.(
A.(1343,0)
B.(1347,0)
C.(1343 ,
D.(1347 ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算
(1)計算: +( 1﹣2cos60°+(2﹣π)0
(2)化簡:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市某幼兒園六一期間舉行親子游戲,主持人請三位家長分別帶自己的孩子參加游戲,主持人準(zhǔn)備把家長和孩子重新組合完成游戲,A、B、C分別表示三位家長,他們的孩子分別對應(yīng)的是a、b、c.
(1)若主持人分別從三位家長和三位孩子中各選一人參加游戲,恰好是A、a的概率是多少(直接寫出答案)
(2)若主持人先從三位家長中任選兩人為一組,再從孩子中任選兩人為一組,四人共同參加游戲,恰好是兩對家庭成員的概率是多少.(畫出樹狀圖或列表)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一塊a×b×c的長方體鐵塊(如圖1所示,a<b<c,單位:cm)放入一長方體(如圖2所示)水槽中,并以速度20cm3/s勻速向水槽注水,直至注滿為止.若將鐵塊a×c面放至水槽的底面,則注水全過程中水槽的水深y (cm)與注水時間t (s)的函數(shù)圖象如圖3所示(水槽各面的厚度忽略不計).已知a為5cm.
(1)填空:水槽的深度為cm,b=cm;
(2)求水槽的底面積S和c的值;
(3)若將鐵塊的b×c面放至水槽的底面,求注水全過程中水槽的水深y(cm)與注水時間t(s)的函數(shù)關(guān)系,寫出t的取值范圍,并畫出圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,BE平分,

BC平行嗎?請說明理由;

EF的位置關(guān)系如何?為什么?

解:理由如下:

平角的定義

已知

____________

______

EF的位置關(guān)系是______

平分已知

角平分線的定義

已知

______等量代換

____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某面粉加工廠要加工一批小麥,2臺大面粉機(jī)和5臺小面粉機(jī)同時工作2小時共加工小麥1.1萬斤;3臺大面粉機(jī)和2臺小面粉機(jī)同時工作5小時共加工小麥3.3萬斤.

(1)1臺大面粉機(jī)和1臺小面粉機(jī)每小時各加工小麥多少萬斤?

(2)該廠現(xiàn)有9.45萬斤小麥需要加工,計劃使用8臺大面粉機(jī)和10臺小面粉機(jī)同時工作5小時,能否全部加工完?請你幫忙計算一下.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】百舸競渡,激情飛揚.為紀(jì)念愛國詩人屈原,某市舉行龍舟賽.甲、乙兩支龍舟隊在比賽時,路程(米)與時間(分鐘)之間的函數(shù)圖象如圖所示,根據(jù)圖象回答下列問題:

最先達(dá)到終點的是________隊,比另一對早________分鐘到達(dá);

在比賽過程中,乙隊在第________分鐘和第________分鐘時兩次加速;

求在什么時間范圍內(nèi),甲隊領(lǐng)先?

相遇前,甲乙兩隊之間的距離不超過的時間范圍是________

查看答案和解析>>

同步練習(xí)冊答案