【題目】定義:如圖1,平面上兩條直線AB、CD相交于點(diǎn)O,對(duì)于平面內(nèi)任意一點(diǎn)M,點(diǎn)M到直線AB、CD的距離分別為p、q,則稱(chēng)有序?qū)崝?shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”,根據(jù)上述定義,“距離坐標(biāo)”為(0,0)的點(diǎn)有1個(gè),即點(diǎn)O.
(1)“距離坐標(biāo)”為1,0的點(diǎn)有 個(gè);
(2)如圖2,若點(diǎn)M在過(guò)點(diǎn)O且與直線AB垂直的直線l上時(shí),點(diǎn)M的“距離坐標(biāo)”為p,q,且BOD 150,請(qǐng)寫(xiě)出p、q的關(guān)系式并證明;
(3)如圖3,點(diǎn)M的“距離坐標(biāo)”為,且DOB 30,求OM的長(zhǎng).
【答案】(1)2;(2);(3)
【解析】
(1)根據(jù)“距離坐標(biāo)”的定義結(jié)合圖形判斷即可;
(2)過(guò)M作MN⊥CD于N,根據(jù)已知得出,,求出∠MON=60°,根據(jù)含30度直角三角形的性質(zhì)和勾股定理求出即可解決問(wèn)題;
(3)分別作點(diǎn)關(guān)于、的對(duì)稱(chēng)點(diǎn)、,連接、、,連接、分別交、于點(diǎn)、點(diǎn),首先證明,求出,,然后過(guò)作,交延長(zhǎng)線于,根據(jù)含30度直角三角形的性質(zhì)求出,,再利用勾股定理求出EF即可.
解:(1)由題意可知,在直線CD上,且在點(diǎn)O的兩側(cè)各有一個(gè),共2個(gè),
故答案為:2;
(2)過(guò)作于,
∵直線于,,
∴,
∵,,
∴,
∴,
∴;
(3)分別作點(diǎn)關(guān)于、的對(duì)稱(chēng)點(diǎn)、,連接、、,連接、分別交、于點(diǎn)、點(diǎn).
∴,,
∴,,,
∴,
∴△OEF是等邊三角形,
∴,
∵,,
∴,,
∵,
∴,
過(guò)作,交延長(zhǎng)線于,
∴,
在中,,則,
在中,,,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=﹣1,給出下列結(jié)論:
①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個(gè)數(shù)有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 中,∠C=90°,將△ABC 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 90°,得到△DEC(其中點(diǎn) D、E 分別是 A、B 兩點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)).
(1)請(qǐng)畫(huà)出旋轉(zhuǎn)后的△DEC;
(2)試判斷 DE 與 AB 的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長(zhǎng)最快的新品種.圖是某天恒溫系統(tǒng)從開(kāi)啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時(shí)間有多少小時(shí)?
(2)求k的值;
(3)當(dāng)x=16時(shí),大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過(guò)點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).
(1)試判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“母親節(jié)”前期,某花店購(gòu)進(jìn)康乃馨和玫瑰兩種鮮花,銷(xiāo)售過(guò)程中發(fā)現(xiàn)康乃馨比玫瑰銷(xiāo)售量大,店主決定將玫瑰每枝降價(jià)1元促銷(xiāo),降價(jià)后30元可購(gòu)買(mǎi)玫瑰的數(shù)量是原來(lái)購(gòu)買(mǎi)玫瑰數(shù)量的1.5倍.
(1)求降價(jià)后每枝玫瑰的售價(jià)是多少元?
(2)根據(jù)銷(xiāo)售情況,店主用不多于900元的資金再次購(gòu)進(jìn)兩種鮮花共500枝,康乃馨進(jìn)價(jià)為2元/枝,玫瑰進(jìn)價(jià)為1.5元/枝,問(wèn)至少購(gòu)進(jìn)玫瑰多少枝?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司10名銷(xiāo)售員,去年完成的銷(xiāo)售額情況如表:
銷(xiāo)售額(單位:萬(wàn)元) | 3 | 4 | 5 | 6 | 7 | 8 | 10 |
銷(xiāo)售員人數(shù)(單位:人) | 1 | 3 | 2 | 1 | 1 | 1 | 1 |
(1)求銷(xiāo)售額的平均數(shù)、眾數(shù)、中位數(shù);
(2)今年公司為了調(diào)動(dòng)員工積極性,提高年銷(xiāo)售額,準(zhǔn)備采取超額有獎(jiǎng)的措施,請(qǐng)根據(jù)(1)的結(jié)果,通過(guò)比較,合理確定今年每個(gè)銷(xiāo)售員統(tǒng)一的銷(xiāo)售額標(biāo)準(zhǔn)是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)滑道由滑坡(AB段)和緩沖帶(BC段)組成,滑雪者在滑坡上滑行的距離y1(單位:m)和滑行時(shí)間t1(單位s)滿足二次函數(shù)關(guān)系,并測(cè)得相關(guān)數(shù)據(jù):
滑行時(shí)間t1/s | 0 | 1 | 2 | 3 | 4 |
滑行距離y1/s | 0 | 4.5 | 14 | 28.5 | 48 |
滑雪者在緩沖帶上滑行的距離y2(單位:m)和滑行時(shí)間t2(單位:s)滿足:y2=52t2﹣2t22,滑雪者從A出發(fā)在緩沖帶BC上停止,一共用了23s.
(1)求y1和t1滿足的二次函數(shù)解析式;
(2)求滑坡AB的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com