(2012•濟南)如圖,矩形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點A(2,0)同時出發(fā),沿矩形BCDE的邊作環(huán)繞運動,物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2012次相遇地點的坐標(biāo)是( 。
分析:利用行程問題中的相遇問題,由于矩形的邊長為4和2,物體乙是物體甲的速度的2倍,求得每一次相遇的地點,找出規(guī)律即可解答.
解答:解:矩形的邊長為4和2,因為物體乙是物體甲的速度的2倍,時間相同,物體甲與物體乙的路程比為1:2,由題意知:
①第一次相遇物體甲與物體乙行的路程和為12×1,物體甲行的路程為12×
1
3
=4,物體乙行的路程為12×
2
3
=8,在BC邊相遇;
②第二次相遇物體甲與物體乙行的路程和為12×2,物體甲行的路程為12×2×
1
3
=8,物體乙行的路程為12×2×
2
3
=16,在DE邊相遇;
③第三次相遇物體甲與物體乙行的路程和為12×3,物體甲行的路程為12×3×
1
3
=12,物體乙行的路程為12×3×
2
3
=24,在A點相遇;

此時甲乙回到原出發(fā)點,則每相遇三次,兩點回到出發(fā)點,
∵2012÷3=670…2,
故兩個物體運動后的第2012次相遇地點的是:第二次相遇地點,即物體甲行的路程為12×2×
1
3
=8,物體乙行的路程為12×2×
2
3
=16,在DE邊相遇;
此時相遇點的坐標(biāo)為:(-1,-1),
故選:D.
點評:此題主要考查了行程問題中的相遇問題及按比例分配的運用,通過計算發(fā)現(xiàn)規(guī)律就可以解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟南)如圖,直線a∥b,直線c與a,b相交,∠1=65°,則∠2=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟南)如圖,二次函數(shù)的圖象經(jīng)過(-2,-1),(1,1)兩點,則下列關(guān)于此二次函數(shù)的說法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟南)如圖,已知雙曲線y=
kx
經(jīng)過點D(6,1),點C是雙曲線第三象限上的動點,過C作CA⊥x軸,過D作DB⊥y軸,垂足分別為A,B,連接AB,BC
(1)求k的值;
(2)若△BCD的面積為12,求直線CD的解析式;
(3)判斷AB與CD的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟南)如圖1,拋物線y=ax2+bx+3與x軸相交于點A(-3,0),B(-1,0),與y軸相交于點C,⊙O1為△ABC的外接圓,交拋物線于另一點D.
(1)求拋物線的解析式;
(2)求cos∠CAB的值和⊙O1的半徑;
(3)如圖2,拋物線的頂點為P,連接BP,CP,BD,M為弦BD中點,若點N在坐標(biāo)平面內(nèi),滿足△BMN∽△BPC,請直接寫出所有符合條件的點N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案