【題目】下列說法不正確的是( 。
A. 所有矩形都是相似的
B. 若線段a=5cm,b=2cm,則a:b=5:2
C. 若線段AB=cm,C是線段AB的黃金分割點(diǎn),且AC>BC,則AC= cm
D. 四條長度依次為lcm,2cm,2cm,4cm的線段是成比例線段
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面內(nèi)的⊙C和⊙C外一點(diǎn)Q,給出如下定義:若過點(diǎn)Q的直線與⊙C存在公共點(diǎn),記為點(diǎn)A,B,設(shè),則稱點(diǎn)A(或點(diǎn)B)是⊙C的“K相關(guān)依附點(diǎn)”,特別地,當(dāng)點(diǎn)A和點(diǎn)B重合時(shí),規(guī)定AQ=BQ,(或).
已知在平面直角坐標(biāo)系xoy中,Q(-1,0),C(1,0),⊙C的半徑為r.
(1)如圖1,當(dāng)時(shí),
①若A1(0,1)是⊙C的“k相關(guān)依附點(diǎn)”,求k的值.
②A2(1+,0)是否為⊙C的“2相關(guān)依附點(diǎn)”.
(2)若⊙C上存在“k相關(guān)依附點(diǎn)”點(diǎn)M,
①當(dāng)r=1,直線QM與⊙C相切時(shí),求k的值.
②當(dāng)時(shí),求r的取值范圍.
(3)若存在r的值使得直線與⊙C有公共點(diǎn),且公共點(diǎn)時(shí)⊙C的“相關(guān)依附點(diǎn)”,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O為BE上一點(diǎn),以OB為半徑的⊙O交AB于點(diǎn)E,交AC于點(diǎn)D.BD平分∠ABC.
(1)求證:AC為⊙O切線;
(2)點(diǎn)F為的中點(diǎn),連接BF,若BC=,BD=8,求⊙O半徑及DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,則下列說法中錯(cuò)誤的是( 。
A. ac<0
B. 2a+b=0
C. 對(duì)于任意x均有ax2+bx≥a+b
D. 4a+2b+c>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點(diǎn)與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).
求(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2;
(1)求反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象直接寫出﹣x>的解集;
(3)將直線l1:y=- x沿y向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,點(diǎn)為邊上一點(diǎn),將沿翻折,點(diǎn)落在對(duì)角線上的點(diǎn)處,連接并延長交射線于點(diǎn).
(1)如果,求的長;
(2)當(dāng)點(diǎn)在邊上時(shí),連接,設(shè),求關(guān)于的函數(shù)關(guān)系式并寫出的取值范圍;
(3)連接,如果是等腰三角形,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣1,0),B(4,0),C(0,3)三點(diǎn),D為直線BC上方拋物線上一動(dòng)點(diǎn),DE⊥BC于E.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖1,求線段DE長度的最大值;
(3)如圖2,設(shè)AB的中點(diǎn)為F,連接CD,CF,是否存在點(diǎn)D,使得△CDE中有一個(gè)角與∠CFO相等?若存在,求點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊三角形ABC中,E為直線AB上一點(diǎn),連接EC.ED與直線BC交于點(diǎn)D,ED=EC.
(1)如圖1,AB=1,點(diǎn)E是AB的中點(diǎn),求BD的長;
(2)點(diǎn)E是AB邊上任意一點(diǎn)(不與AB邊的中點(diǎn)和端點(diǎn)重合),依題意,將圖2補(bǔ)全,判斷AE與BD間的數(shù)量關(guān)系并證明;
(3)點(diǎn)E不在線段AB上,請(qǐng)?jiān)趫D3中畫出符合條件的一個(gè)圖形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com