【題目】如圖,已知∠MON=25°,矩形ABCD的邊BC在OM上,對角線AC⊥ON.
(1)求∠ACD度數(shù);
(2)當AC=5時,求AD的長.(參考數(shù)據(jù):sin25°=0.42;cos25°=0.91;tan25°=0.47,結(jié)果精確到0.1)
【答案】(1) 25°;(2)2.1.
【解析】試題分析:(1)延長AC交ON于點E,如圖,利用互余計算出∠OCE=65°,再利用對頂角相等得到∠ACB=∠OCE=65°,再根據(jù)∠ACD=90°-∠ACB即可解決問題;
(2)接著在Rt△ABC中利用∠ACB的余弦可計算出BC,然后根據(jù)矩形的性質(zhì)即可得到AD的長.
試題解析:(1)延長AC交ON于點E,如圖,
∵AC⊥ON,
∴∠OEC=90°,
在Rt△OEC中,
∵∠O=25°,
∴∠OCE=65°,
∴∠ACB=∠OCE=65°,
∴∠ACD=90°﹣∠ACB=25°
(2)∵四邊形ABCD是矩形,
∴∠ABC=90°,AD=BC,
在Rt△ABC中,∵cos∠ACB=,
∴BC=ACcos65°=5×0.42=2.1,
∴AD=BC=2.1.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,直線,直線與直線、分別相交于、兩點,直線與直線、分別相交于、兩點,點在直線上運動(不與、兩點重合).
(1)如圖1,當點在線段上運動時,總有:,請說明理由:
(2)如圖2,當點在線段的延長線上運動時,、、之間有怎樣的數(shù)量關(guān)系,并說明理由:
(3)如圖3,當點在線段的延長線上運動時,、、之間又有怎樣的數(shù)量關(guān)系(只需直接給出結(jié)論)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:(1)當線段AB平行于投影面P時,它的正投影是線段A1B1,線段與它的投影的大小關(guān)系為AB
___A1B1;
(2)當線段AB傾斜于投影面P時,它的正投影是線段A2B2,線段與它的投影的大小關(guān)系為AB___A2B2;
(3)當線段AB垂直于投影面P時,它的正投影是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年“五一節(jié)”前,某商場用60萬元購進某種商品,該商品有甲、乙兩種包裝共500件,其中每件甲包裝中有75個A種產(chǎn)品,每個A產(chǎn)品的成本為12元;每件乙包裝中有100個B產(chǎn)品,每個B種產(chǎn)品的成本為14元.商場將A產(chǎn)品標價定為每個18元,B產(chǎn)品標價定為每個20元.
(1)甲、乙兩種包裝的產(chǎn)品各有多少件?
(2)“五一節(jié)”商場促銷,將A產(chǎn)品按原定標價打9折銷售,B種產(chǎn)品按原定標價打8.5折銷售,“五一節(jié)”期間該產(chǎn)品全部賣完,該商場銷售該商品共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以A點為圓心,以相同的長為半徑作弧,分別與射線AM,AN交于B,C兩點,連接BC,再分別以B,C為圓心,以相同長(大于BC)為半徑作弧,兩弧相交于點D,連接AD,BD,CD.則下列結(jié)論錯誤的是( )
A. AD平分∠MAN B. AD垂直平分BC
C. ∠MBD=∠NCD D. 四邊形ACDB一定是菱形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點坐標為A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)將△ABC繞坐標原點O旋轉(zhuǎn)180°,畫出圖形,并寫出點A的對應點A′的坐標_____;
(2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°,直接寫出點A的對應點A″的坐標_____;
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的所有可能的坐標_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當四邊形ADFC是菱形時,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,點E在CD上,點F、G在AB上,且AF=FG=BG=DE=CE。以A、B、C、D、E、F、G這7個點中的三個為頂點的三角形中,面積最小的三角形有_________個,面積最大的三角形有__________個。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD,AB∥CD,點E是BC延長線上一點,連接AC、AE,AE交CD于點F,∠1=∠2,∠3=∠4.
證明:
(1)∠BAE=∠DAC;
(2)∠3=∠BAE;
(3)AD∥BE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com