分析 作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,再求出AH,MH,MB,CH/CO,然后證明△CON∽△CHM,再利用相似比可計算出ON.
解答 解:作MH⊥AC于H,如圖,
∵四邊形ABCD為正方形,
∴∠MAH=45°,
∴△AMH為等腰直角三角形,
∴AH=MH=$\frac{\sqrt{2}}{2}AM=\frac{\sqrt{2}}{2}×4=2\sqrt{2}$,
∵CM平分∠ACB,
∴BM=MH=$2\sqrt{2}$,
∴AB=4+2$\sqrt{2}$,
∴AC=$\sqrt{2}$AB=4$\sqrt{2}$+4,
∴OC=$\frac{1}{2}$AC=$\sqrt{2}$+2,CH=AC-AH=4$\sqrt{2}$+4-2$\sqrt{2}$=2$\sqrt{2}$+4,
∵BD⊥AC,
∴ON∥MH,
∴△CON∽△CHM,
∴$\frac{ON}{MH}=\frac{OC}{CH}$,即$\frac{ON}{2\sqrt{2}}=\frac{\sqrt{2}+2}{2\sqrt{2}+4}$,
∴ON=2,
故答案為:2
點評 本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.也考查了角平分線的性質(zhì)和正方形的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{1}{3}$ | C. | 4 | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com