【題目】如圖,一艘海輪位于燈塔的北偏東方向,距離燈塔120海里的處,它沿正南方向航行一段時間后,到達位于燈塔的南偏東方向上的處,求和的長(結果取整數).
參考數據:,取.
【答案】BP=153;BA=161.
【解析】
試題分析:如圖,過點P作PC⊥AB,垂足為C,由題意可知,∠A=64°,∠B=45°,PA=120,在Rt△APC中,求得PC、AC的長;在Rt△BPC中,求得BP、BC的長,即可得BA的長.
試題解析:如圖,過點P作PCAB,垂足為C,
由題意可知,∠A=64°,∠B=45°,PA=120,
在Rt△APC中,sin∠A=,
∴PC=PA·sin∠A=120×sin64°,
AC=PA×cos∠A=120×cos64°,
在Rt△BPC中,sin∠B=,
∴BP=
BC=
∴BA=BC+AC=120×sin64°+120×cos64°≈120×0.90+120×0.44≈161.
答:BP的長約有153海里,BA的長約有161海里.
科目:初中數學 來源: 題型:
【題目】【探究函數y=x+的圖象與性質】
(1)函數y=x+的自變量x的取值范圍是 ;
(2)下列四個函數圖象中函數y=x+的圖象大致是 ;
(3)對于函數y=x+,求當x>0時,y的取值范圍.
請將下列的求解過程補充完整.
解:∵x>0
∴y=x+=()2+()2=(﹣)2+
∵(﹣)2≥0
∴y≥ .
[拓展運用]
(4)若函數y=,則y的取值范圍 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對角線AC,BD相交于點O,下列結論中:
①∠ABC=∠ADC;
②AC與BD相互平分;
③AC,BD分別平分四邊形ABCD的兩組對角;
④四邊形ABCD的面積S=ACBD.
正確的是 (填寫所有正確結論的序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=α(0°<α<60°),分別以AB、BC為邊作等邊三角形ABE和等邊三角形BCD,連結CE,如圖1所示.
(1)直接寫出∠ABD的大。ㄓ煤恋氖阶颖硎荆;
(2)判斷DC與CE的位置關系,并加以證明;
(3)在(2)的條件下,連結DE,如圖2,若∠DEC=45°,求α的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com