【題目】閱讀短文,解決問題

如果一個三角形和一個菱形滿足條件:三角形的一個角與菱形的一個角重合,且菱形的這個角的對角頂點在三角形的這個角的對邊上,則稱這個菱形為該三角形的“親密菱形”.如圖1,菱形AEFD為△ABC的“親密菱形”.

如圖2,△ABC中,以點A為圓心,以任意長為半徑作弧,交AB、AC于點M、N,再分別以M、N為圓心,以大于MN的長為半徑作弧,兩弧交于點P,作射線AP,BC于點F,過點FFD//AC,F(xiàn)E//AB.

(1)求證:四邊形AEFD是△ABC的“親密菱形”;

(2)AB=6,AC=12,∠BAC=45°時,求菱形AEFD的面積.

【答案】(1)證明見解析;(2) 四邊形的面積為.

【解析】(1)根據(jù)尺規(guī)作圖可知AF平分∠BAC,再根據(jù)DF//AC,可得AD=DF,再由兩組對邊分別平行的四邊形是平行四邊形可得四邊形AEFD是平行四邊形,繼而可得平行四邊形AEFD是菱形,根據(jù)親密菱形的定義即可得證;

(2)設菱形的邊長為a,即DF=AD=a,則BD=6-a,可證得BDFBAC,根據(jù)相似三角形的性質可求得a=4,過DDGAC,垂足為G,在RtADG中, DG=2,繼而可求得面積.

(1)由尺規(guī)作圖可知AF平分∠BAC,

∴∠DAF=EAF,

DF//AC,∴∠DFA=EAF,∴∠DAF=DFA,AD=DF,

FD//AC,F(xiàn)E//AB,∴四邊形AEFD是平行四邊形,

∴平行四邊形AEFD是菱形,

∵∠BAC與∠DAE重合,點FBC上,

∴菱形AEFDABC親密菱形”;

(2)設菱形的邊長為a,即DF=AD=a,則BD=6-a,

DF//AC,∴△BDFBAC,

BD:BA=BF:AC,

即(6-a):6=a:12,

a=4,

DDGAC,垂足為G,

RtADG中,∠DAG=45°,DG=AD=2,

S菱形AEFD=AEDG=8

即四邊形AEFD的面積為8.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知FGAB,CDAB,垂足分別為GD,∠1=∠2,

求證:∠CED+ACB180°,

請你將小明的證明過程補充完整.

證明:∵FGAB,CDAB,垂足分別為G,D(已知)

∴∠FGB=∠CDB90°(   )

GFCD(   )

GFCD(已證)

∴∠2=∠BCD(   )

又∵∠1=∠2(已知)

∴∠1=∠BCD(   )

   (   )

∴∠CED+ACB180°(   )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于BC兩點.

(1)求yx之間的函數(shù)關系式;

(2)直接寫出當x>0時,不等式x+b的解集;

(3)若點Px軸上,連接APABC的面積分成1:3兩部分,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】彈簧掛上物體后會伸長,若一彈簧長度(cm)與所掛物體質量(kg)之間的關系如下表:

物體的質量(kg)

0

1

2

3

4

5

彈簧的長度(cm)

12

125

13

135

14

145

則下列說法錯誤的是(

A.彈簧長度隨物體的質量的變化而變化,物體的質量是自變量,彈簧的長度是因變量

B.如果物體的質量為x kg,那么彈簧的長度y cm可以表示為y=12+0.5x

C.在彈簧能承受的范圍內(nèi),當物體的質量為7kg時,彈簧的長度為16cm

D.在沒掛物體時,彈簧的長度為12cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學在一次用頻率估計概率的實驗中,統(tǒng)計了某一個結果出現(xiàn)的頻率,繪制了如下的表格,則符合這一結果的實驗可能是(

實驗次數(shù)

100

200

300

500

800

1200

頻率

0.430

0.360

0.320

0.328

0.330

0.329

A. 拋一枚質地均勻的硬幣,出現(xiàn)正面的概率

B. 從一個裝有3個紅球和2個白球的不透明袋子里任取1球,取出紅球的概率

C. 擲一枚均勻的正方體骰子,出現(xiàn)的點數(shù)是3的倍數(shù)的概率

D. 從正方形、正五邊形、正六邊形中任意取一個圖形,是軸對稱圖形的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在全市中學運動會800m比賽中,甲、乙兩名運動員同時起跑,剛跑出200m后,甲不慎摔倒,他又迅速地爬起來繼續(xù)投入比賽,并取得了優(yōu)異的成績.圖中分別表示甲、乙兩名運動員所跑的路程ym)與比賽時間xs)之間的關系,根據(jù)圖象解答下列問題:

1)甲再次投入比賽后,甲的速度為;

2)甲再次投入比賽后,在距離終點多遠處追上乙?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知頂點為的拋物線經(jīng)過點,點.

(1)求拋物線的解析式;

(2)如圖1,直線軸相交于點軸相交于點,拋物線與軸相交于點,在直線上有一點,若,求的面積;

(3)如圖2,點是折線上一點,過點軸,過點軸,直線與直線相交于點,連接,將沿翻折得到,若點落在軸上,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且表示數(shù)a的點、數(shù)b的點與原點的距離相等.

(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;

(2)|b-1|+|a-1|=________;

(3)化簡:|a+b|+|a-c|-|b|+|b-c|.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是線段上任一點,,兩點分別從同時向點運動,且點的運動速度為,點的運動速度為,運動的時間為.

1)若,

①運動后,求的長;

②當在線段上運動時,試說明;

2)如果時,,試探索的值.

查看答案和解析>>

同步練習冊答案