如圖,拋物線軸于A、B兩點(diǎn),交軸于點(diǎn)C,
點(diǎn)P是它的頂點(diǎn),點(diǎn)A的橫坐標(biāo)是3,點(diǎn)B的橫坐標(biāo)是1.

(1)求的值;
(2)求直線PC的解析式;
(3)請?zhí)骄恳渣c(diǎn)A為圓心、直徑為5的圓與直線PC的位置關(guān)系,并說明理由.
(參考數(shù)據(jù),,

解析試題分析:(1)由題意知,代入A(-3,0)B(1,0)
   (4分)
(2)  (3分)
(3)⊙A與直線PC相交(可用相似知識(shí),也可三角函數(shù),求得圓心A到PC的距離d與r大小比較,從而確定直線和圓的位置關(guān)系。)(3分)
考點(diǎn):直線解析式
點(diǎn)評:先由一元二次方程的兩根關(guān)系,得出兩圓半徑之和,然后根據(jù)圓與圓的位置關(guān)系判斷條件,確定位置關(guān)系.設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離,則d>R+r;外切,則d=R+r;相交,則R-r<d<R+r;內(nèi)切,則d=R-r;內(nèi)含,則d<R-r.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線軸于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),交軸于點(diǎn)C,已知B(8,0),,△ABC的面積為8.

(1)求拋物線的解析式;

(2)若動(dòng)直線EF(EF∥軸)從點(diǎn)C開始,以每秒1個(gè)長度單位的速度沿軸負(fù)方向平移,且交軸、線段BC于E、F兩點(diǎn),動(dòng)點(diǎn)P同時(shí)從點(diǎn)B出發(fā),在線段OB上以每秒2個(gè)單位的速度向原點(diǎn)O運(yùn)動(dòng)。連結(jié)FP,設(shè)運(yùn)動(dòng)時(shí)間秒。當(dāng)為何值時(shí),的值最大,并求出最大值;

(3)在滿足(2)的條件下,是否存在的值,使以P、B、F為頂點(diǎn)的三角形與△ABC相似。若存在,試求出的值;若不存在,請說明理由。     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆湖北省天門市十一校九年級(jí)4月聯(lián)考數(shù)學(xué)試卷(帶解析) 題型:填空題

如圖,拋物線軸于點(diǎn),交軸于點(diǎn),在軸上方的拋物線上有兩點(diǎn),它們關(guān)于軸對稱,點(diǎn)軸左側(cè).于點(diǎn),于點(diǎn),四邊形與四邊形的面積分別為6和10,則的面積之和為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市初九年級(jí)上學(xué)期第二次階段測數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,拋物線軸于兩點(diǎn)(的左側(cè)),交軸于點(diǎn),頂點(diǎn)為。

(1)求點(diǎn)的坐標(biāo);

(2)求四邊形的面積;

(3)拋物線上是否存在點(diǎn),使得,若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年安徽省中考?jí)狠S題預(yù)測試數(shù)學(xué)卷 題型:選擇題

如圖,拋物線軸于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),交軸于點(diǎn)C,已知B(8,0),,△ABC的面積為8.

1.求拋物線的解析式;

2.若動(dòng)直線EF(EF∥軸)從點(diǎn)C開始,以每秒1個(gè)長度單位的速度沿軸負(fù)方向平移,且交軸、線段BC于E、F兩點(diǎn),動(dòng)點(diǎn)P同時(shí)從點(diǎn)B出發(fā),在線段OB上以每秒2個(gè)單位的速度向原點(diǎn)O運(yùn)動(dòng)。連結(jié)FP,設(shè)運(yùn)動(dòng)時(shí)間秒。當(dāng)為何值時(shí),的值最大,并求出最大值;

3.在滿足(2)的條件下,是否存在的值,使以P、B、F為頂點(diǎn)的三角形與△ABC相似。若存在,試求出的值;若不存在,請說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案