【題目】解下列方程(組):
(1)(x+3)(x+1)=1;
(2)﹣1=;
(3)
【答案】(1)x1=﹣2+,x2=﹣2﹣;(2)無解;(3).
【解析】
(1)先去括號,然后化簡,最后利用公式法解方程;
(2)先去分母,然后再解方程,最后驗根;
(3)利用加減消元法消去y,求得x后代入,再求得y的值即可.
(1)去括號,得+4x+3=1,
移項、合并同類項,得+4x+2=0.
∵a=1,b=4,c=2,
∴x= =﹣2±.
∴x1=﹣2+,x2=﹣2﹣.
(2)去分母,得x(x+2)﹣(x﹣1)(x+2)=3,
化簡得:x+2=3
解得x=1.
經(jīng)檢驗x=1不是原方程的解.
故原方程無解;
(3),
①×5+②得13x=26,解得x=2,
把x=2代入①得4+y=3,解得y=﹣1.
∴方程組的解為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+mx+n交x軸于點A(﹣2,0)和點B,交y軸于點C(0,2).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點M在拋物線上,且S△AOM=2S△BOC,求點M的坐標(biāo);
(3)如圖2,設(shè)點N是線段AC上的一動點,作DN⊥x軸,交拋物線于點D,求線段DN長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張三角形紙片,其三邊之比為.小方將紙片對折,第一次使頂點和重合,第二次使頂點和重合,第三次使頂點和重合,三條折痕依次記為,,,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且cosα= .下列結(jié)論:
①△ADE∽△ACD; ②當(dāng)BD=6時,△ABD與△DCE全等;
③△DCE為直角三角形時,BD為8; ④0<CE≤6.4.
其中正確的結(jié)論是____________.(把你認(rèn)為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+3的圖象交x軸于點A(1,0),B(3,0),交y軸于點C.
(1)求這個二次函數(shù)的表達(dá)式;
(2)點P是直線BC下方拋物線上的一動點,求△BCP面積的最大值;
(3)直線x=m分別交直線BC和拋物線于點M,N,當(dāng)△BMN是等腰三角形時,直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,若拋物線L1的頂點A在拋物線L2上,拋物線L2的頂點B也在拋物線L1上(點A與點B不重合)我們把這樣的兩拋物線L1、L2互稱為“友好”拋物線,可見一條拋物線的“友好”拋物線可以有很多條.
(1)如圖2,已知拋物線L3:y=2x2-8x+4與y軸交于點C,試求出點C關(guān)于該拋物線對稱軸對稱的對稱點D的坐標(biāo);
(2)請求出以點D為頂點的L3的“友好”拋物線L4的解析式,并指出L3與L4中y同時隨x增大而增大的自變量的取值范圍;
(3)若拋物y=a1(x-m)2+n的任意一條“友好”拋物線的解析式為y=a2(x-h)2+k,請寫出a1與a2的關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為紀(jì)念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母A,B,C依次表示這三首歌曲).比賽時,將A,B,C這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機抽取一張卡片,進行歌詠比賽.
(1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;
(2)試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達(dá)式(利潤=收入﹣成本);并求出售價為多少元時獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點D.
(1)求線段AD的長度;
(2)點E是線段AC上的一點,試問:當(dāng)點E在什么位置時,直線ED與⊙O相切?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com