【題目】解下列方程(組):

1)(x+3)(x+1)=1;

21

3

【答案】1x1=﹣2+,x2=﹣2;(2)無解;(3

【解析】

1)先去括號,然后化簡,最后利用公式法解方程;

2)先去分母,然后再解方程,最后驗根;

3)利用加減消元法消去y,求得x后代入,再求得y的值即可.

1)去括號,得+4x+31,

移項、合并同類項,得+4x+20

∵a1b4,c2,

∴x =﹣

∴x1=﹣2+,x2=﹣2

2)去分母,得x(x+2)﹣(x1(x+2)3

化簡得:x+2=3

解得x1

經(jīng)檢驗x1不是原方程的解.

故原方程無解;

3

①×5+②13x26,解得x2,

x2代入4+y3,解得y=﹣1

方程組的解為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+mx+nx軸于點A﹣2,0)和點B,交y軸于點C0,2).

1)求拋物線的函數(shù)表達(dá)式;

2)若點M在拋物線上,且SAOM=2SBOC,求點M的坐標(biāo);

3)如圖2,設(shè)點N是線段AC上的一動點,作DNx軸,交拋物線于點D,求線段DN長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一張三角形紙片,其三邊之比為.小方將紙片對折,第一次使頂點重合,第二次使頂點重合,第三次使頂點重合,三條折痕依次記為,,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AB=AC=10,D是邊BC上一動點(不與B,C重合),∠ADE=B=α,DEAC于點E,cosα= .下列結(jié)論:

①△ADE∽△ACD; ②當(dāng)BD=6時,△ABD與△DCE全等;

③△DCE為直角三角形時,BD為8; ④0<CE≤6.4.

其中正確的結(jié)論是____________.(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+3的圖象交x軸于點A(1,0),B(3,0),交y軸于點C.

(1)求這個二次函數(shù)的表達(dá)式;

(2)P是直線BC下方拋物線上的一動點,求BCP面積的最大值;

(3)直線x=m分別交直線BC和拋物線于點M,N,當(dāng)BMN是等腰三角形時,直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,若拋物線L1的頂點A在拋物線L2上,拋物線L2的頂點B也在拋物線L1上(點A與點B不重合)我們把這樣的兩拋物線L1、L2互稱為友好拋物線,可見一條拋物線的友好拋物線可以有很多條.

1)如圖2,已知拋物線L3y=2x2-8x+4y軸交于點C,試求出點C關(guān)于該拋物線對稱軸對稱的對稱點D的坐標(biāo);

2)請求出以點D為頂點的L3友好拋物線L4的解析式,并指出L3L4y同時隨x增大而增大的自變量的取值范圍;

3)若拋物y=a1x-m2+n的任意一條友好拋物線的解析式為y=a2x-h2+k,請寫出a1a2的關(guān)系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為紀(jì)念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母AB,C依次表示這三首歌曲).比賽時,將A,B,C這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機抽取一張卡片,進行歌詠比賽.

1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;

2)試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達(dá)式;

2)設(shè)商品每天的總利潤為W(元),求Wx之間的函數(shù)表達(dá)式(利潤=收入﹣成本);并求出售價為多少元時獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點D.

(1)求線段AD的長度;

(2)點E是線段AC上的一點,試問:當(dāng)點E在什么位置時,直線ED與⊙O相切?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案