【題目】如圖,將矩形置于平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)在軸上,點(diǎn)在上,將矩形沿折疊壓平,使點(diǎn)落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn).若拋物線(且為常數(shù))的頂點(diǎn)落在的內(nèi)部,則的取值范圍是( )
A. B. C. D.
【答案】B
【解析】
利用對(duì)折的性質(zhì),得到線段的關(guān)系,用勾股定理建立方程,最后用相似△AFG∽△ABD得到比例式,計(jì)算出點(diǎn)G,H的縱坐標(biāo)即可.
如圖,
過點(diǎn)E作EF⊥AB于F,EF分別與AD、OC交于點(diǎn)G、H,
過點(diǎn)D作DP⊥EF于點(diǎn)P,
則EP=PH+EH=DC+EH=1+EH,
在Rt△PDE中,由勾股定理可得,
DP2=DE2-PE2=9+(1+EH)2,
∴BF2=DP2=9+(1+EH)2,
在Rt△AEF中,AF=AB-BF=3-,EF=4+EH,AE=4,
∵AF2+EF2=AE2,
即:(3-)2+(4+EH)2=16,
解得EH=1,
∴AB=3,AF=2,E(2,-1).
∵∠AFG=∠ABD=90°,∠FAG=∠BAD,
∴△AFG∽△ABD.
∴,
即:,
∴FG=2.
∴EG=EF-FG=3.
∴點(diǎn)G的縱坐標(biāo)為2.
∵y=ax2-4ax+10=a(x-2)2+(10-20a),
∴此拋物線y=ax2-4ax+10的頂點(diǎn)必在直線x=2上.
又∵拋物線的頂點(diǎn)落在△ADE的內(nèi)部,
∴此拋物線的頂點(diǎn)必在EG上.
∴-1<10-20a<2,
∴.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,,點(diǎn)從點(diǎn)出發(fā),先移動(dòng)到軸上的點(diǎn)處,再沿垂直于軸的方向向左移動(dòng)1個(gè)單位至點(diǎn)處,最后移動(dòng)到點(diǎn)處停止.當(dāng)點(diǎn)移動(dòng)的路徑最短時(shí) (即三條線段、、長(zhǎng)度之和最小),點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)D,E分別是△ABC的邊BA和BC延長(zhǎng)線上的點(diǎn),作∠DAC的平分線AF,若AF∥BC.
(1)求證:△ABC是等腰三角形;
(2)作∠ACE的平分線交AF于點(diǎn)G,若∠B=40°,求∠AGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖1所示,直線y=x+c與x軸交于點(diǎn)A(﹣4,0),與y軸交于點(diǎn)C,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A,C.
(1)求拋物線的解析式
(2)點(diǎn)E在拋物線的對(duì)稱軸上,求CE+OE的最小值;
(3)如圖2所示,M是線段OA的上一個(gè)動(dòng)點(diǎn),過點(diǎn)M垂直于x軸的直線與直線AC和拋物線分別交于點(diǎn)P、N
①若以C,P,N為頂點(diǎn)的三角形與△APM相似,則△CPN的面積為 ;
②若點(diǎn)P恰好是線段MN的中點(diǎn),點(diǎn)F是直線AC上一個(gè)動(dòng)點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)D,使以點(diǎn)D,F(xiàn),P,M為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.
注:二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(﹣,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線的頂點(diǎn)為,與軸交于、兩點(diǎn),且,與軸交于點(diǎn).
求拋物線的函數(shù)解析式;
求的面積;
能否在拋物線第三象限的圖象上找到一點(diǎn),使的面積最大?若能,請(qǐng)求出點(diǎn)的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,已知∠DBC=60°,AC>BC,又△ABC'、△BCA'、△CAB'都是△ABC形外的等邊三角形,而點(diǎn)D在AC上,且BC=DC
(1)證明:△C'BD≌△B'DC
(2)證明:△AC'D≌△DB'A
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.
(1)連接BC,求BC的長(zhǎng);
(2)求四邊形ABDC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=,D,E分別為AC,AB的中點(diǎn),BF∥CE交DE的延長(zhǎng)線于點(diǎn)F.
(1)求證:四邊形ECBF是平行四邊形;
(2) 當(dāng)∠A=時(shí),求證:四邊形ECBF是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com