【題目】如圖,直線ABCD相交于O點(diǎn),OECD,OC平分∠AOF,EOF=56°,

(1)求∠BOD的度數(shù);

(2)寫出圖中所有與∠BOE互余的角,它們分別是   

【答案】(1)BOD=34°;(2)COF,AOC,BOD.

【解析】

1)已知OECD,根據(jù)垂直的定義可得∠COE=90°,即可求得∠COF=34°;已知OC平分∠AOF,根據(jù)角平分線的性質(zhì)可得∠AOC=COF=34°,再由對(duì)頂角相等即可得∠BOD=AOC=34°;2)結(jié)合圖形,根據(jù)互為余角的定義即可解答.

解:(1)OECD,

∴∠COE=90°,

∵∠EOF=56°,

∴∠COF=90°﹣56°=34°,

OC平分AOF,

∴∠AOC=COF=34°,

∴∠BOD=AOC=34°;

(2)寫出圖中所有與BOE互余的角,它們分別是:COF,AOC,BOD.

故答案為:COF,AOC,BOD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C 是路段 AB 的中點(diǎn),兩人從 C 同時(shí)出發(fā),以相同的速度分別沿兩條直線行走,并同時(shí)到達(dá) D,E 兩地,DAAB,EBABD,E 與路段AB 的距離相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數(shù).

(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請(qǐng)你求出∠EAD與∠B、∠C之間的數(shù)列關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AD是△ABC的高,AC=2 ,AD=4,把△ADC沿著直線AD對(duì)折,點(diǎn)C落在點(diǎn)E的位置,如果△ABE是等腰三角形,那么線段BE的長(zhǎng)度為(
A.2
B.2 或5
C.2
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠E=50°,BAC=50°,D=110°,求∠ABD的度數(shù).

請(qǐng)完善解答過程,并在括號(hào)內(nèi)填寫相應(yīng)的理論依據(jù).

解:∵∠E=50°,BAC=50°,(已知)

∴∠E=   (等量代換)

      .(   

∴∠ABD+D=180°.(   

∴∠D=110°,(已知)

∴∠ABD=70°.(等式的性質(zhì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織學(xué)生參觀航天展覽,甲、乙、丙、丁四位同學(xué)隨機(jī)分成兩組乘車.
(1)哪兩位同學(xué)會(huì)被分到第一組,寫出所有可能;
(2)用列表法(或樹狀圖法)求甲、乙分在同一組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與正比例函數(shù)的圖像相交于點(diǎn)A(2,),與軸相交于點(diǎn)B

(1)求的值;

(2)在軸上存在點(diǎn)C,使得AOC的面積等于AOB的面積,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CDABDEFABF

(1)求證:EFCD;

(2)DEBCEF平分∠AED,求證:CD平分∠ACB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若線段上的一個(gè)點(diǎn)把這條線段分成12的兩條線段,則稱這個(gè)點(diǎn)是這條線段的三等分點(diǎn).如圖1,點(diǎn)C在線段AB上,且ACCB12,則點(diǎn)C是線段AB的一個(gè)三等分點(diǎn),顯然,一條線段的三等分點(diǎn)有兩個(gè).

1)已知:如圖2DE15cm,點(diǎn)PDE的三等分點(diǎn),求DP的長(zhǎng).

2)已知,線段AB15cm,如圖3,點(diǎn)P從點(diǎn)A出發(fā)以每秒1cm的速度在射線AB上向點(diǎn)B方向運(yùn)動(dòng);點(diǎn)Q從點(diǎn)B出發(fā),先向點(diǎn)A方向運(yùn)動(dòng),當(dāng)與點(diǎn)P重合后立馬改變方向與點(diǎn)P同向而行且速度始終為每秒2cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),且當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),求t的值.

若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),且當(dāng)點(diǎn)P是線段AQ的三等分點(diǎn)時(shí),求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案