【題目】如圖,∠MON=90°,長方形ABCD的頂點(diǎn)B、C分別在邊OM、ON上,當(dāng)B在邊OM上運(yùn)動時,C隨之在邊ON上運(yùn)動,若CD=5,BC=24,運(yùn)動過程中,點(diǎn)D到點(diǎn)O的最大距離為_____.
【答案】
【解析】
取BC的中點(diǎn)E,連接OD、OE、DE,根據(jù)三角形的任意兩邊之和大于第三邊可知當(dāng)O、D、E三點(diǎn)共線時,點(diǎn)D到點(diǎn)O的距離最大,再根據(jù)勾股定理列式求出DE的長,根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出OE的長,兩者相加即可得解.
取BC的中點(diǎn)E,連接OD、OE、DE,如圖所示:
∵
∴當(dāng)O、D、E三點(diǎn)共線時,點(diǎn)D到點(diǎn)O的距離最大
∵CD=5,BC=24,∠MON=90°
∴
∴OD的最大值為:
∴點(diǎn)D到點(diǎn)O的最大距離為
故填:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲乙兩名采購員去同一家飼料公司分別購買兩次飼料,兩次購買飼料價格分別為m元/千克和n元/千克,且m≠n,兩名采購員的采購方式也不同,其中甲每次購買1000千克,乙每次用去800元,而不管購買多少飼料.
(1)甲、乙所購飼料的平均單價各是多少?(用字母m、n表示)
(2)誰的購貨方式更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:已知∠MAB=60°,以AB的長為菱形ABCD的邊長,點(diǎn)D在AM上,
(1)作出這個菱形.(保留作圖痕跡,不寫作法,不用證明)
(2)若AB=2,則對角線AC的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在4×8的網(wǎng)格紙中,每個小正方形的邊長都為1,動點(diǎn)P、Q分別從點(diǎn)D、A同時出發(fā)向右移動,點(diǎn)P的運(yùn)動速度為每秒1個單位,點(diǎn)Q的運(yùn)動速度為每秒0.5個單位,當(dāng)點(diǎn)P運(yùn)動到點(diǎn)C時,兩個點(diǎn)都停止運(yùn)動,設(shè)運(yùn)動時間為t(0<t<8).
(1)請?jiān)?/span>4×8的網(wǎng)格紙圖2中畫出t為6秒時的線段PQ.并求其長度;
(2)當(dāng)t為多少時,△PQB是以PQ為腰的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線過點(diǎn)且平行于軸. 如果三個頂點(diǎn)的坐標(biāo)分別是,,,關(guān)于直線的對稱圖形是.
(1)畫出
(2)直接寫出、、的坐標(biāo).
(3)求出四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種樹苗,栽種時高度約為80厘米,為研究它的生長情況,測得數(shù)據(jù)如下表:
(1)此變化過程中_____是自變量,_____是因變量;
(2)樹苗高度h與栽種的年數(shù)n的關(guān)系式為_____;
(3)栽種后_____后,樹苗能長到280厘米.
栽種以后的年數(shù)n/年 | 高度h/厘米 |
1 | 105 |
2 | 130 |
3 | 155 |
4 | 180 |
… | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展以“我最愛的職業(yè)”為主的調(diào)查活動,通過對學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),下面兩圖是根據(jù)這組數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息解答下列各題:
(1)求在這次活動中,一共調(diào)查了多少名學(xué)生?
(2)在扇形統(tǒng)計(jì)圖中,求“教師”所在扇形的圓心角的度數(shù);
(3)補(bǔ)全折線統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線.下列結(jié)論中,正確的是( )
A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義符號min{a,b}的含義為:當(dāng)a≥b時,min{a,b}=b;當(dāng)a<b時,min{a,b}=a,如:min{1,-2)=-2,min{-3,-2)=-3,則方程min{x,-x}=x2-1的解是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com