年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013
A.c>0 B.c<0 C.c³0 D.c¹0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué) 三點(diǎn)一測叢書 八年級數(shù)學(xué) 下 (江蘇版課標(biāo)本) 江蘇版 題型:013
反比例函數(shù)y=(k≠0)任取一點(diǎn)M(a,b),過M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因?yàn)閎=,故ab=k,所以S=|k|(如圖(1)).
這就是說,過雙曲線上任意一點(diǎn)作x軸、y軸的垂線,所得的矩形面積為|k|.這就是k的幾何意義,會給解題帶來方便.現(xiàn)舉例如下:
例1:如(2)圖,已知點(diǎn)P1(x1,y1)和P2(x2,y2)都在反比例函數(shù)y=(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大。
解答:=|k|
=|k|
故=
例2:如圖(3),在y=(x>0)的圖像上有三點(diǎn)A、B、C,經(jīng)過三點(diǎn)分別向x軸引垂線,交x軸于A1、B1、C1三點(diǎn),連結(jié)OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有( )
A.S1=S2=S3
B.S1<S2<S3
C.S3<S1<S2
D.S1>S2>S3
解答:∵=|k|=,
=|k|=
=|k|=
S1=S2=S3,故選A.
例3:一個反比例函數(shù)在第三象限的圖像如圖(4)所示,若A是圖像任意一點(diǎn),AM⊥x軸,垂足為M,O是原點(diǎn),如果△AOM的面積是3,那么這個反比例函數(shù)的解析式是________.
解答:∵S△AOM=|k|
又S△AOM=3,
∴|k|=3,|k|=6
∴k=±6
又∵曲線在第三象限
∴k>0∴k=6
∴所以反比例函數(shù)的解析式為y=.
根據(jù)是述意義,請你解答下題:
如圖(5),過反比例函數(shù)y=(x>0)的圖像上任意兩點(diǎn)A、B分別作軸和垂線,垂足分別為C、D,連結(jié)OA、OB,設(shè)AC與OB的交點(diǎn)為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得
A.S1>S2
B.S1=S2
C.S1<S2
D.大小關(guān)系不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:044
閱讀下列證明過程:已知,如圖四邊形ABCD中,AB=DC,AC=BD,AD≠BC,求證:四邊形ABCD是等腰梯形.
讀后完成下列各小題.
(1)
證明過程是否有錯誤?如有,錯在第幾步上,答: .(2)
作DE∥AB的目的是: .(3)
有人認(rèn)為第9步是多余的,你的看法呢?為什么?答: .(4)
判斷四邊形ABED為平行四邊形的依據(jù)是: .(5)
判斷四邊形ABCD是等腰梯形的依據(jù)是 .(6)
若題設(shè)中沒有AD≠BC,那么四邊形ABCD一定是等腰梯形嗎?為什么?答: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:044
探索研究
(1
)觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)之比是一個常數(shù),這個常數(shù)是 ;根據(jù)此規(guī)律,如果(為正整數(shù))表示這個數(shù)列的第項(xiàng),那么 , ;(2
)如果欲求的值,可令 ……………………………………………………①將①式兩邊同乘以3,得
………………………………………………………②
由②減去①式,得
.(3
)用由特殊到一般的方法知:若數(shù)列,從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為,則 (用含的代數(shù)式表示),如果這個常數(shù),那么 (用含的代數(shù)式表示).查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年人教版七年級下第七章第三節(jié)多邊形及其內(nèi)角和(1)練習(xí)卷(解析版) 題型:選擇題
如圖,若,那么等于( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com