(2013•長沙)設(shè)a、b是任意兩個不等實數(shù),我們規(guī)定:滿足不等式a≤x≤b的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時,有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.
(1)反比例函數(shù)y=
2013
x
是閉區(qū)間[1,2013]上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)y=kx+b(k≠0)是閉區(qū)間[m,n]上的“閉函數(shù)”,求此函數(shù)的解析式;
(3)若二次函數(shù)y=
1
5
x2-
4
5
x-
7
5
是閉區(qū)間[a,b]上的“閉函數(shù)”,求實數(shù)a,b的值.
分析:(1)根據(jù)反比例函數(shù)y=
2013
x
的單調(diào)區(qū)間進(jìn)行判斷;
(2)根據(jù)新定義運算法則列出關(guān)于系數(shù)k、b的方程組
km+b=m
kn+b=n
km+b=n
kn+b=m
,通過解該方程組即可求得系數(shù)k、b的值;
(3)y=
1
5
x2-
4
5
x-
7
5
=
1
5
(x-2)2-
11
5
,所以該二次函數(shù)的圖象開口方向向上,最小值是-
11
5
,且當(dāng)x<2時,y隨x的增大而減;當(dāng)x>2時,y隨x的增大而增大;根據(jù)新定義運算法則列出關(guān)于系數(shù)a、b的方程組
1
5
a2-
4
5
a-
7
5
=b
1
5
b2-
4
5
b-
7
5
=a
1
5
a2-
4
5
a-
7
5
=a
1
5
b2-
4
5
b-
7
5
=b
,通過解方程組即可求得a、b的值.
解答:解:(1)反比例函數(shù)y=
2013
x
是閉區(qū)間[1,2013]上的“閉函數(shù)”.理由如下:
反比例函數(shù)y=
2013
x
在第一象限,y隨x的增大而減小,
當(dāng)x=1時,y=2013;
當(dāng)x=2013時,y=1,
所以,當(dāng)1≤x≤2013時,有1≤y≤2013,符合閉函數(shù)的定義,故
反比例函數(shù)y=
2013
x
是閉區(qū)間[1,2013]上的“閉函數(shù)”;

(2)分兩種情況:k>0或k<0.
①當(dāng)k>0時,一次函數(shù)y=kx+b(k≠0)的圖象是y隨x的增大而增大,故根據(jù)“閉函數(shù)”的定義知,
km+b=m
kn+b=n
,
解得
k=1
b=0

∴此函數(shù)的解析式是y=x;
②當(dāng)k<0時,一次函數(shù)y=kx+b(k≠0)的圖象是y隨x的增大而減小,故根據(jù)“閉函數(shù)”的定義知,
km+b=n
kn+b=m

解得
k=-1
b=m+n

∴此函數(shù)的解析式是y=-x+m+n;

(3)∵y=
1
5
x2-
4
5
x-
7
5
=
1
5
(x-2)2-
11
5

∴該二次函數(shù)的圖象開口方向向上,最小值是-
11
5
,且當(dāng)x<2時,y隨x的增大而減。划(dāng)x>2時,y隨x的增大而增大;
①當(dāng)b≤2時,此二次函數(shù)y隨x的增大而減小,則根據(jù)“閉函數(shù)”的定義知,
1
5
a2-
4
5
a-
7
5
=b
1
5
b2-
4
5
b-
7
5
=a
,
解得,
a=1
b=-2
(不合題意,舍去)或
a=-2
b=1
;
②當(dāng)a<2<b時,此時二次函數(shù)y=
1
5
x2-
4
5
x-
7
5
的最小值是-
11
5
=a,根據(jù)“閉函數(shù)”的定義知,b=
1
5
a2-
4
5
a-
7
5
、b=
1
5
b2-
4
5
b-
7
5
;
a)當(dāng)b=
1
5
a2-
4
5
a-
7
5
時,由于b=
1
5
(-
11
5
2-
4
5
×(-
11
5
)-
7
5
=
166
125
<2,不合題意,舍去;
b)當(dāng)b=
1
5
b2-
4
5
b-
7
5
時,解得b=
109
2
,
由于b>2,
所以b=
9+
109
2

③當(dāng)a≥2時,此二次函數(shù)y隨x的增大而增大,則根據(jù)“閉函數(shù)”的定義知,
1
5
a2-
4
5
a-
7
5
=a
1
5
b2-
4
5
b-
7
5
=b
,
解得,
a=
9-
109
2
b=
9+
109
2
,
9-
109
2
<0,
∴舍去.
綜上所述,
a=-2
b=1
a=-
11
5
b=
9+
109
2
點評:本題綜合考查了二次函數(shù)圖象的對稱性和增減性,一次函數(shù)圖象的性質(zhì)以及反比例函數(shù)圖象的性質(zhì).解題的關(guān)鍵是弄清楚“閉函數(shù)”的定義.解題時,也要注意“分類討論”數(shù)學(xué)思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

同步練習(xí)冊答案