【題目】如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,且與軸交于點;點在反比例函數(shù)的圖象上,以點為圓心,半徑為的作圓與軸,軸分別相切于點、.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)請連結(jié),并求出的面積;
(3)直接寫出當(dāng)時,的解集.
【答案】(1),;(2)4;(3).
【解析】
(1)連接CB,CD,依據(jù)四邊形BODC是正方形,即可得到B(0,2),點C(2,2),利用待定系數(shù)法即可得到反比例函數(shù)和一次函數(shù)的解析式;
(2)依據(jù)OB=2,點A的橫坐標(biāo)為-4,即可得到△AOB的面積為:2×4×=4;
(3)依據(jù)數(shù)形結(jié)合思想,可得當(dāng)x<0時,k1x+b>0的解集為:-4<x<0.
解:(1)如圖,連接,,
∵⊙C與軸,軸相切于點D,,且半徑為,
,,
∴四邊形是正方形,
,
,點,
把點代入反比例函數(shù)中,
解得:,
∴反比例函數(shù)解析式為:,
∵點在反比例函數(shù)
把代入中,可得,
,
把點和分別代入一次函數(shù)中,
得出:,
解得:,
∴一次函數(shù)的表達式為:;
(2)如圖,連接,
,點的橫坐標(biāo)為,
的面積為:;
(3)由,根據(jù)圖象可知:當(dāng)時,的解集為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與軸只有一個公共點,且與軸交于點
(1)試判斷該拋物線的開口方向,說明理由;
(2)若,軸交該拋物線于點,且是直角三角形,求拋物線的解析式;
(3)若直線()與該拋物線有兩個交點,且與軸和軸分別交于點,記的面積為,求的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx+3與軸、軸分別相交于點A、B,并與拋物線的對稱軸交于點,拋物線的頂點是點.
(1)求k和b的值;
(2)點G是軸上一點,且以點、C、為頂點的三角形與△相似,求點G的坐標(biāo);
(3)在拋物線上是否存在點E:它關(guān)于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標(biāo),如果不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明學(xué)習(xí)電學(xué)知識后,用四個開關(guān)按鍵(每個開關(guān)按鍵閉合的可能性相等)、一個電源和一個燈泡設(shè)計了一個電路圖
(1)若小明設(shè)計的電路圖如圖1(四個開關(guān)按鍵都處于打開狀態(tài))如圖所示,求任意閉合一個開關(guān)按鍵,燈泡能發(fā)光的概率;
(2)若小明設(shè)計的電路圖如圖2(四個開關(guān)按鍵都處于打開狀態(tài))如圖所示,求同時時閉合其中的兩個開關(guān)按鍵,燈泡能發(fā)光的概率.(用列表或樹狀圖法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,弦,
(1)求證:是等邊三角形.
(2)若點是的中點,連接,過點作,垂足為,若,求線段的長;
(3)若的半徑為4,點是弦的中點,點是直線上的任意一點,將點繞點逆時針旋轉(zhuǎn)60°得點,求線段的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將的邊繞著點順時針旋轉(zhuǎn)得到,邊AC繞著點A逆時針旋轉(zhuǎn)得到,聯(lián)結(jié).當(dāng)時,我們稱是的“雙旋三角形”.如果等邊的邊長為a,那么它的“雙旋三角形”的面積是__________(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在梯形ABCD中,,P是線段BC上一點,以P為圓心,PA為半徑的與射線AD的另一個交點為Q,射線PQ與射線CD相交于點E,設(shè).
(1)求證:;
(2)如果點Q在線段AD上(與點A、D不重合),設(shè)的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)如果與相似,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△OAB在直角坐標(biāo)系中的位置如圖,點A在第一象限,點B在x軸正半軸上,OA=OB=6,∠AOB=30°.
(1)求點A、B的坐標(biāo);
(2)開口向上的拋物線經(jīng)過原點O和點B,設(shè)其頂點為E,當(dāng)△OBE為等腰直角三角形時,求拋物線的解析式;
(3)設(shè)半徑為2的⊙P與直線OA交于M、N兩點,已知,P(m,2)(m>0),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于,兩點,點在點的左側(cè),拋物線的頂點為,規(guī)定:拋物線與軸圍成的封閉區(qū)域稱為“區(qū)域”(不包含邊界).
(1)如果該拋物線經(jīng)過(1,3),求的值,并指出此時“區(qū)域”有_____個整數(shù)點;(整數(shù)點就是橫縱坐標(biāo)均為整數(shù)的點)
(2)求拋物線的頂點的坐標(biāo)(用含的代數(shù)式表示);
(3)在(2)的條件下,如果區(qū)域中僅有4個整數(shù)點時,直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com