如圖,在四邊形ABCD中,E、F分別是AD、BC的中點,G、H分別是BD、AC的中點,AB=CD,EF與GH有什么位置關系?請說明理由.
分析:連接GE、GF、HF、EH,根據(jù)三角形的中位線定理即可證得EG=GF=FH=EH,則四邊形EFGH是菱形,利用菱形的性質即可證得.
解答:解:連接GE、GF、HF、EH.
∵E、G分別是AD、BD的中點,
EG=
1
2
AB
,
同理HF=
1
2
AB
FG=
1
2
CD
,EH=
1
2
CD

又∵AB=CD
∴EG=GF=FH=EH
∴四邊形EFGH是菱形.
∴EF⊥GH
點評:本題考查了三角形的中位線定理,菱形的判定與性質,正確證明四邊形EFGH是菱形是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結AD、AE、CD,則下列結論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案