【題目】甲、乙兩個(gè)不透明的口袋,甲口袋中裝有3個(gè)分別標(biāo)有數(shù)字1,2,3的小球,乙口袋中裝有2個(gè)分別標(biāo)有數(shù)字4,5的小球,它們的形狀、大小完全相同,現(xiàn)隨機(jī)從甲口袋中摸出一個(gè)小球記下數(shù)字,再從乙口袋中摸出一個(gè)小球記下數(shù)字.
(1)請(qǐng)用列表或樹狀圖的方法(只選其中一種),表示出兩次所得數(shù)字可能出現(xiàn)的所有結(jié)果;
(2)求出兩個(gè)數(shù)字之和能被3整除的概率.

【答案】
(1)

解:樹狀圖如下:


(2)

解:∵共6種情況,兩個(gè)數(shù)字之和能被3整除的情況數(shù)有2種,

∴兩個(gè)數(shù)字之和能被3整除的概率為 ,

即P(兩個(gè)數(shù)字之和能被3整除)=


【解析】先根據(jù)題意畫樹狀圖,再根據(jù)所得結(jié)果計(jì)算兩個(gè)數(shù)字之和能被3整除的概率.本題主要考查了列表法與樹狀圖法,解決問題的關(guān)鍵是掌握概率的計(jì)算公式.隨機(jī)事件A的概率P(A)等于事件A可能出現(xiàn)的結(jié)果數(shù)除以所有可能出現(xiàn)的結(jié)果數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,小敏、小穎分別畫了△ABC和△DEF , 尺寸如圖.如果兩個(gè)三角形的面積分別記作S△ABC、S△DEF , 那么它們的大小關(guān)系是( 。

A.S△ABC>S△DEF
B.S△ABC<S△DEF
C.S△ABC=S△DEF
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】手工制作課上,小紅利用一些花布的邊角料,剪裁后裝飾手工畫,下面四個(gè)圖案是她剪裁出的空心不等邊三角形、等邊三角形、正方形、矩形花邊,其中,每個(gè)圖案花邊的寬度都相等,那么,每個(gè)圖案中花邊的內(nèi)外邊緣所圍成的幾何圖形不相似的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是我們常用的折疊式小刀,圖2中刀柄外形是一個(gè)矩形挖去一個(gè)小半圓,其中刀片的兩條邊緣線可看成兩條平行的線段,轉(zhuǎn)動(dòng)刀片時(shí)會(huì)形成如圖2所示的∠1與∠2,則∠1與∠2的度數(shù)和是度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AC為對(duì)角線,E為AB上一點(diǎn),過點(diǎn)E作EF∥AD,與AC、DC分別交于點(diǎn)G,F(xiàn),H為CG的中點(diǎn),連接DE,EH,DH,F(xiàn)H.下列結(jié)論:
①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若 ,則3SEDH=13SDHC , 其中結(jié)論正確的有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,AE平分∠CAB交CD于點(diǎn)E,若∠C=50°,則∠AED=( )

A.65°
B.115°
C.125°
D.130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,連接BD,在BD的延長線上取一點(diǎn)E,在DB的延長線上取一點(diǎn)F,使BF=DE,連接AF、CE.
求證:AF∥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作⊙O的切線交CD的延長線于點(diǎn)E,BC=6, .求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的解析式為y=ax2 , 過點(diǎn)B1(1,0)作x軸的垂線,交拋物線于點(diǎn)A1(1,2);過點(diǎn)B2 ,0)作x軸的垂線,交拋物線于點(diǎn)A2;…;過點(diǎn)Bn(( n1 , 0)(n為正整數(shù))作x軸的垂線,交拋物線于點(diǎn)An , 連接AnBn+1 , 得Rt△AnBnBn+1
(1)求a的值;
(2)直接寫出線段AnBn , BnBn+1的長(用含n的式子表示);
(3)在系列Rt△AnBnBn+1中,探究下列問題:
①當(dāng)n為何值時(shí),Rt△AnBnBn+1是等腰直角三角形?
②設(shè)1≤k<m≤n(k,m均為正整數(shù)),問:是否存在Rt△AkBkBk+1與Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案