【題目】如圖,在△ABC中,點D、E分別在邊AB、AC上,DE∥BC,∠ACD=∠B,那么下列判斷中,不正確的是( 。
A. △ADE∽△ABC B. △CDE∽△BCD C. △ADE∽△ACD D. △ADE∽△DBC
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2-12ax+36a-5的圖象在4<x<5這一段位于x軸下方,在8<x<9這一段位于x軸上方,則a的值為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以RtABC的直角邊AC為直徑作O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,作OF//AB交BC于點F,連接EF、EC.
(1)求證:OFCE;
(2)求證:EF是O的切線;
(3)若O的半徑為3,EAC60,求tanADE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=(x-2)2+m與x軸交于點A和B,與y軸交于點C,點D是點C關(guān)于拋物線對稱軸的對稱點,若點A的坐標(biāo)為(1,0),直線y2=kx+b經(jīng)過點A,D.
(1)求拋物線的函數(shù)解析式;
(2)求點D的坐標(biāo)和直線AD的函數(shù)解析式;
(3)根據(jù)圖象指出,當(dāng)x取何值時,y2>y1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,已知O是坐標(biāo)原點,B、C兩點的坐標(biāo)分別為(3,-1)、(2,1)。
(1)以O(shè)點為位似中心在y軸的左側(cè)將△OBC放大到兩倍畫出圖形。
(2)寫出B、C兩點的對應(yīng)點B、C的坐標(biāo);
(3)如果△OBC內(nèi)部一點M的坐標(biāo)為(x,y),寫出M的對應(yīng)點M的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 軸于點 ,點是直線 上的動點.直線 交 于點 ,過點 作直線 垂直于 ,垂足為 ,過點 , 的直線 交 于點 E,當(dāng)直線 ,,能圍成三角形時,設(shè)該三角形面積為 ,當(dāng)直線 ,,能圍成三角形時,設(shè)該三角形面積為 .
(1)若點 在線段 上,且 ,則 點坐標(biāo)為_________;
(2)若點 在直線上,且,則的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面直角坐標(biāo)系中,O為坐標(biāo)原點,二次函數(shù)的圖象與x軸交于、B兩點,與y軸交于點C;
(1)求c與b的函數(shù)關(guān)系式;
(2)點D為拋物線頂點,作拋物線對稱軸DE交x軸于點E,連接BC交DE于F,若AE=DF,求此二次函數(shù)解析式;
(3)在(2)的條件下,點P為第四象限拋物線上一點,過P作DE的垂線交拋物線于點M,交DE于H,點Q為第三象限拋物線上一點,作于N,連接MN,且,當(dāng)時,連接PC,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在活動課上,小明和小紅合作用一副三角板來測量學(xué)校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,他調(diào)整自己的位置,設(shè)法使得三角板的一條直角邊保持水平,且斜邊與旗桿頂端M在同一條直線上,測得旗桿頂端M仰角為45°;小紅的眼睛與地面的距離(CD)是1.5m,用同樣的方法測得旗桿頂端M的仰角為30°.兩人相距28米且位于旗桿兩側(cè)(點B、N、D在同一條直線上).求出旗桿MN的高度.(參考數(shù)據(jù): ,結(jié)果保留整數(shù).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,△ABC的頂點A,B,C均在格點上.
(1)∠ACB的大小為 (度)
(2)在如圖所示的網(wǎng)格中,以A為中心,取旋轉(zhuǎn)角等于∠BAC,把△ABC逆時針旋轉(zhuǎn),請用無刻度的直尺,畫出旋轉(zhuǎn)后的△ABC,并簡要說明旋轉(zhuǎn)后點C和點B的對應(yīng)點點C′和點B′的位置是如何而找到的(不要求證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com