【題目】如圖1,∠MON=90°,點A、B分別在OM、ON上運動(不與點O重合).
(1)若BC是∠ABN的平分線,BC的反方向延長線與∠BAO的平分線交與點D. ①若∠BAO=60°,則∠D=°.
②猜想:∠D的度數(shù)是否隨A,B的移動發(fā)生變化?并說明理由 .
(2)若∠ABC= ∠ABN,∠BAD= ∠BAO,則∠D=°.
(3)若將“∠MON=90°”改為“∠MON=α(0°<α<180°)”,∠ABC= ∠ABN,∠BAD= ∠BAO,其余條件不變,則∠D=°(用含α、n的代數(shù)式表示)
【答案】
(1)45;∠D的度數(shù)不變
(2)30
(3)
【解析】解:(1)①∵∠BAO=60°、∠MON=90°, ∴∠ABN=150°,
∵BC平分∠ABN、AD平分∠BAO,
∴∠CBA= ∠ABN=75°,∠BAD= ∠BAO=30°,
∴∠D=∠CBA﹣∠BAD=45°,
所以答案是:45;
②∠D的度數(shù)不變.理由是:
設∠BAD=α,
∵AD平分∠BAO,
∴∠BAO=2α,
∵∠AOB=90°,
∴∠ABN=∠AOB+∠BAO=90°+2α,
∵BC平分∠ABN,
∴∠ABC=45°+α,
∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;(2)設∠BAD=α,
∵∠BAD= ∠BAO,
∴∠BAO=3α,
∵∠AOB=90°,
∴∠ABN=∠AOB+∠BAO=90°+3α,
∵∠ABC= ∠ABN,
∴∠ABC=30°+α,
∴∠D=∠ABC﹣∠BAD=30°+α﹣α=30°,
所以答案是:30;(3)設∠BAD=β,
∵∠BAD= ∠BAO,
∴∠BAO=nβ,
∵∠AOB=α°,
∴∠ABN=∠AOB+∠BAO=α+nβ,
∵∠ABC= ∠ABN,
∴∠ABC= +β,
∴∠D=∠ABC﹣∠BAD= +β﹣β= ,
所以答案是: .
【考點精析】利用三角形的內角和外角和三角形的外角對題目進行判斷即可得到答案,需要熟知三角形的三個內角中,只可能有一個內角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角;三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角.
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD中,點E、F分別是邊AD、AB的中點,連接EF.
(1)如圖1,若點G是邊BC的中點,連接FG,則EF與FG關系為: ;
(2)如圖2,若點P為BC延長線上一動點,連接FP,將線段FP以點F為旋轉中心,逆時針旋轉900,得到線段FQ,連接EQ,請猜想EF、EQ、BP三者之間的數(shù)量關系,并證明你的結論;
(3)若點P為CB延長線上一動點,按照(2)中的作法,在圖3中補全圖形,并直接寫出EF、EQ、BP三者之間的數(shù)量關系: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以菱形AOBC的頂點O為原點,對角線OC所在直線為x軸建立平面直角坐標系,若OB=5,點C的坐標為(8,0),則點A的坐標為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,
(1)求證:四邊形ADCE為矩形;
(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù),abc≠0)與直線l都經(jīng)過y軸上的一點P,且拋物線L的頂點Q在直線l上,則稱此直線l與該拋物線L具有“一帶一路”關系.此時,直線l叫做拋物線L的“帶線”,拋物線L叫做直線l的“路線”.
(1)若直線y=mx+1與拋物線y=x2﹣2x+n具有“一帶一路”關系,求m,n的值;
(2)若某“路線”L的頂點在反比例函數(shù)y=的圖象上,它的“帶線”l的解析式為y=2x﹣4,求此“路線”L的解析式;
(3)當常數(shù)k滿足≤k≤2時,求拋物線L:y=ax2+(3k2﹣2k+1)x+k的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】上海世博會的某紀念品原價168元,連續(xù)兩次降價a%后售價為128元,下面所列方程中正確的是
A. 168(1+a%)2=128 B. 168(1-a%)2=128
C. 168(1-2a%)=128 D. 168(1-a2%)=128
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com