【題目】如圖,在平面直角坐標(biāo)系中, ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(3,5),B(4,3),
C(1,1).
(1)畫出ABC關(guān)于x軸對(duì)稱的A1B1C1;并填寫出A1B1C三個(gè)頂點(diǎn)的坐標(biāo).
A1 (_________,_________);
B1 (_________,________);
C1 (_________,_________).
(2)求ABC的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)40°后得到的圖形,若點(diǎn)C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣x2+mx+3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0)
(1)求m的值及拋物線的頂點(diǎn)坐標(biāo).
(2)點(diǎn)P是拋物線對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),當(dāng)PA+PC的值最小時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE是△ABC的中位線,延長(zhǎng)DE到F,使EF=DE,連接BF
(1)求證:BF=DC;
(2)求證:四邊形ABFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一張對(duì)邊互相平行的紙條,折成如圖所示,是折痕,若,則下列結(jié)論正確的有( )
(1);(2);(3);(4)
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:
(1)△AEF≌△CEB;
(2)AF=2CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE= 度;
(2)設(shè)∠BAC=α,∠BCE=β.
①如圖2,當(dāng)點(diǎn)D在線段BC上移動(dòng),則α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
②當(dāng)點(diǎn)D在直線BC上移動(dòng),則α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=6,BC=8,tan∠B= ,點(diǎn)D是邊BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),過(guò)點(diǎn)D作DE⊥AB,垂足為E,點(diǎn)F是AD的中點(diǎn),連接EF,設(shè)△AEF的面積為y,點(diǎn)D從點(diǎn)B沿BC運(yùn)動(dòng)到點(diǎn)C的過(guò)程中,D與B的距離為x,則能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙P與x軸相切,與y軸相交于A(0,2),B(0,8),則圓心P的坐標(biāo)是( )
A.(5,3)
B.(5,4)
C.(3,5)
D.(4,5)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com