如圖,△ABC內(nèi)接于⊙O,且AB=AC,點D在⊙O上,AD⊥AB于點A,AD與BC交于點E,F(xiàn)在DA的延長線上,且AF=AE.
(1)試判斷BF與⊙O的位置關(guān)系,并說明理由;
(2)若BF=5,cos∠C=
4
5
,求⊙O的直徑.
證明:(1)BF與⊙O相切,連接OB、OA,連接BD(1分),
∵AD⊥AB,∴∠BAD=90°,
∴BD是直徑,∴BD過圓心
∵AB=AC,
∴∠ABC=∠C,
∵∠C=∠D,
∴∠ABC=∠D,
∵AD⊥AB,
∴∠ABD+∠D=90°,
∵AF=AE,
∴∠EBA=∠FBA,
∴∠ABD+∠FBA=90°,
∴OB⊥BF,
∴BF是⊙O切線(4分);

(2)∵∠C=∠D,cos∠C=
4
5
,
∴cos∠D=
4
5
,
∵BF=5,
BD
DF
=
4
5
,
BF
DF
=
3
5

∴BD=
4
3
×5=
20
3
,
∴直徑為
20
3
(8分).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB是⊙O的切線,B為切點,AO與⊙O交于點C,若∠BAO=40°,則∠OCB的度數(shù)為( 。
A.40°B.50°C.65°D.75°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O交AC于點D,且AD=DC,CO的延長線交⊙O于點E,過點E作弦EF⊥AB,垂足為點G.
(1)求證:BC是⊙O的切線;
(2)若AB=2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,PA,PB是⊙O的切線,A,B為切點,∠OAB=30°,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB為⊙O的弦,C為劣弧AB的中點.
(1)若⊙O的半徑為5,AB=8,求tan∠BAC;
(2)若∠DAC=∠BAC,且點D在⊙O的外部,判斷AD與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知在△ABC中,AB=AC=6,cosB=
1
3
?點O在邊AB上,⊙O過點B且分別與邊AB、BC交于點D、E,且EF⊥AC,垂足為F,設(shè)OB=x,CF=y.
(1)求證:直線EF是⊙O的切線;
(2)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫自變量的取值范圍).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點C,AC平分∠DAB.
(1)試探究AD和CD的位置關(guān)系,并說明理由.
(2)若AD=3,AC=
15
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,直線AM⊥AN,⊙O分別與AM、AN相切于B、C兩點,連接OC、BC,則有∠ACB=∠OCB;(請思考:為什么?)如果測得AB=a,則可知⊙O的半徑r=a.(請思考:為什么?)
(1)將圖①中直線AN向右平移,與⊙O相交于C1、C2兩點,⊙O與AM的切點仍記為B,如圖②.請你寫出與平移前相應(yīng)的結(jié)論,并將圖②補充完整;判斷此結(jié)論是否成立,且說明理由.
(2)在圖②中,若只測得AB=a,能否求出⊙O的半徑r?若能求出,請你用a表示r;若不能求出,請補充一個條件(補充條件時不能添加輔助線,若補充線段請用b表示,若補充角請用α表示),并用a和補充的條件表示r.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,AC+BC=8,∠ACB的平分線交AB于點O,以O(shè)為圓心的⊙O與AC相切于點D.
(1)求證:⊙0與BC相切;
(2)當AC=2時,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案