【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)、點(diǎn)在半徑為上,上一動(dòng)點(diǎn),軸上一定點(diǎn),當(dāng)點(diǎn)點(diǎn)逆時(shí)針運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)是(  )

A.B.C.D.

【答案】A

【解析】

結(jié)合圖形及tanDPC=tan30°=,且D為定點(diǎn),分析動(dòng)點(diǎn)P與動(dòng)點(diǎn)C運(yùn)動(dòng)具有相關(guān)性,其運(yùn)動(dòng)的路徑均為圓弧,長(zhǎng)度比為對(duì)應(yīng)線段的比,求出點(diǎn)P的運(yùn)動(dòng)弧長(zhǎng)即可求解.

解:連接MA,MB,AB,過(guò)點(diǎn)MAB的垂線交ABN,則AN=BN=AB=,而MA=MB=,

在直角三角形AMN中,∵sinAMN=

∴∠AMN=60°,故∠AMB=120°

點(diǎn)P在圓上從點(diǎn)逆時(shí)針運(yùn)動(dòng)到點(diǎn)時(shí),其所走的弧長(zhǎng)為

PDC中,,故tan= ,且結(jié)合圖形及PC兩點(diǎn)的相關(guān)性,知PC的運(yùn)動(dòng)路徑均為圓弧,且路徑長(zhǎng)度比為其對(duì)應(yīng)得線段的比,即為,故點(diǎn)C的運(yùn)動(dòng)路徑長(zhǎng)為:

關(guān)于點(diǎn)C的路徑簡(jiǎn)證:如圖連接DM,以DM為直角邊,構(gòu)造一個(gè)直角三角形DME,使∠DME=30°,∠MDE90°,連接CE,則,而易知∠PDM=CDE,所以PDMCDE,故有,因此得到CE=PM=1,而通過(guò)構(gòu)造知點(diǎn)E為定點(diǎn),故點(diǎn)C的路徑為以點(diǎn)E為圓心,1為半徑的圓。

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在RtABC中,∠B90°,ABBC12cm,點(diǎn)D從點(diǎn)A出發(fā)沿邊AB2cm/s的速度向點(diǎn)B移動(dòng),移動(dòng)過(guò)程中始終保持DEBCDFAC(點(diǎn)E、F分別在ACBC上).設(shè)點(diǎn)D移動(dòng)的時(shí)間為t秒.

1)試判斷四邊形DFCE的形狀,并說(shuō)明理由;

2)當(dāng)t為何值時(shí),四邊形DFCE的面積等于20cm2?

3)如圖2,以點(diǎn)F為圓心,FC的長(zhǎng)為半徑作⊙F,在運(yùn)動(dòng)過(guò)程中,當(dāng)⊙F與四邊形DFCE只有1個(gè)公共點(diǎn)時(shí),請(qǐng)直接寫(xiě)出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)接到一批防護(hù)服生產(chǎn)任務(wù),按要求15天完成,已知這批防護(hù)服的出廠價(jià)為每件80元,為按時(shí)完成任務(wù),該企業(yè)動(dòng)員放假回家的工人及時(shí)返回加班趕制.該企業(yè)第天生產(chǎn)的防護(hù)服數(shù)量為件,之間的關(guān)系可以用圖中的函數(shù)圖象來(lái)刻畫(huà).

1)直接寫(xiě)出的函數(shù)關(guān)系式________;

2)由于疫情加重,原材料緊缺,防護(hù)服的成本前5天為每件50元,從第6天起每件防護(hù)服的成本比前一天增加2元,設(shè)第天創(chuàng)造的利潤(rùn)為元,直接利用(1)的結(jié)論,求之間的函數(shù)表達(dá)式,并求出第幾天的利潤(rùn)最大,最大利潤(rùn)是多少元?(利潤(rùn)=出廠價(jià)-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)yk1x+b的圖象與反比例函數(shù)y的圖象相交于AB兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣14),點(diǎn)B的坐標(biāo)為(4,n).

1)求這兩個(gè)函數(shù)的表達(dá)式;

2)根據(jù)圖象,直接寫(xiě)出滿足k1x+bx的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,的直徑,、為圓周上兩點(diǎn),且,過(guò)點(diǎn),交的延長(zhǎng)線于點(diǎn)

1)求證:切線;

2)填空:①當(dāng)四邊形為菱形,則的度數(shù)為________;

②當(dāng)時(shí),四邊形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由邊長(zhǎng)為的小正方形構(gòu)成的網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).四邊形的頂點(diǎn)在格點(diǎn)上,點(diǎn)是邊邊上的一點(diǎn).請(qǐng)選擇適當(dāng)?shù)母顸c(diǎn),用無(wú)刻度的直尺在網(wǎng)格中完成下列畫(huà)圖,保留連線的痕跡,不要求說(shuō)明理由.

1)①過(guò)邊于;

②過(guò)點(diǎn);

③在上作線段

2)在(1)的條件下,連,若邊上的動(dòng)點(diǎn),在網(wǎng)格中求作一條線段等于的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)購(gòu)買(mǎi)甲、乙兩種樹(shù)苗進(jìn)行綠化,購(gòu)買(mǎi)一棵甲種樹(shù)苗的價(jià)錢(qián)比購(gòu)買(mǎi)一棵乙種樹(shù)苗的價(jià)錢(qián)多 10 元錢(qián),已知購(gòu)買(mǎi) 20 棵甲種樹(shù)苗、30 棵乙種樹(shù)苗共需 1 200 元錢(qián).

1)求購(gòu)買(mǎi)一棵甲種、一棵乙種樹(shù)苗各多少元?

2)社區(qū)決定購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共 400 棵,總費(fèi)用不超過(guò) 10 600 元,那么該社區(qū)最多可以購(gòu)買(mǎi)多少棵甲種樹(shù)苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ACB和△ADE都是等腰直角三角形,∠ACB=∠ADE90°,以CE、BC為邊作平行四邊形CEFB,連CD、CF

1)如圖1,當(dāng)E、D分別在ACAB上時(shí),求證:CDCF;

2)如圖2,△ADE繞點(diǎn)A旋轉(zhuǎn)一定角度,判斷(1)中CDCF的數(shù)量關(guān)系是否依然成立,并加以證明;

3)如圖3AE,AB,將△ADEA點(diǎn)旋轉(zhuǎn)一周,當(dāng)四邊形CEFB為菱形時(shí),直接寫(xiě)出CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某中學(xué)學(xué)生課余生活情況,對(duì)喜愛(ài)看課外書(shū)、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì),現(xiàn)從該校隨機(jī)抽取n名學(xué)生作為樣本,采用問(wèn)卷調(diào)查的方式收集數(shù)據(jù)參與問(wèn)卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng),并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,由圖中提供的信息,解答下列問(wèn)題:

補(bǔ)全條形統(tǒng)計(jì)圖;

若該校共有學(xué)生2400名,試估計(jì)該校喜愛(ài)看電視的學(xué)生人數(shù).

若調(diào)查到喜愛(ài)體育活動(dòng)的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名,求恰好抽到2名男生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案