已知,AB=8,P是AB黃金分割點(diǎn),PA>PB,則PA的長為               
.

試題分析:根據(jù)黃金分割點(diǎn)的定義,知PA是較長線段;則,代入數(shù)據(jù)化簡即可:
由于P為線段AB=8的黃金分割點(diǎn),且PA>PB,
.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E為BC邊上一點(diǎn),以BE為邊作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同側(cè).

(1)當(dāng)正方形的頂點(diǎn)F恰好落在對角線AC上時,求BE的長;
(2)將(1)問中的正方形BEFG沿BC向右平移,記平移中的正方形BEFG為正方形B′EFG,當(dāng)點(diǎn)E與點(diǎn)C重合時停止平移.設(shè)平移的距離為t,正方形B′EFG的邊EF與AC交于點(diǎn)M,連接B′D,B′M,DM.是否存在這樣的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,請說明理由;
(3)在(2)問的平移過程中,設(shè)正方形B′EFG與△ADC重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在△ABC中,AB="AC=" 5,BC= 8,D,E分別為BC,AB邊上一點(diǎn),∠ADE=∠C.

(1)求證:△BDE∽△CAD;
(2)若CD=2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在正方形ABCD中,AB=1,點(diǎn)E在AB延長線上,聯(lián)結(jié)CE、DE,DE交邊BC于點(diǎn)F,設(shè)BE,CF

圖1
(1)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(2)如圖2,對角線AC、BD的交點(diǎn)記作O,直線OF交線段CE于點(diǎn)G,求證:;

圖2
(3)在(2)的條件下,當(dāng)時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上一點(diǎn)(不與點(diǎn)A、B重合),連結(jié)CO并延長CO交⊙O于點(diǎn)D,連結(jié)AD.

(1)求弦長AB的長度;(結(jié)果保留根號);
(2)當(dāng)∠D=20°時,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直角三角形ABC中(∠C=90°),放置邊長分別3,4,x的三個正方形,則x的值為                 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在?ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,則DF=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,AC+BC=9,點(diǎn)O是斜邊AB上一點(diǎn),以O(shè)為圓心2為半徑的圓分別與AC、BC相切于點(diǎn)D、E。

(1)求AC、BC的長;
(2)若AC=3,連接BD,求圖中陰影部分的面積(取3.14)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知直線,,,則    

查看答案和解析>>

同步練習(xí)冊答案