【題目】飲水機接通電源就進入自動程序,若在水溫為時,接通電源后,水溫和時間的關系如圖.開機加熱時每分鐘上升,加熱到,飲水機關機停止加熱,水溫開始下降,下降時水溫與開機后的時間成反比例關系.當水溫降至,飲水機自動開機,重復上述自動程序.若上午開機,則時能否喝到超過的水?說明理由.

【答案】開機,則時不能喝到超過的水

【解析】

首先根據(jù)題意求出兩個函數(shù)的解析式,然后再求出飲水機完成一個循環(huán)周期所需要的時間,再計算求出每一個循環(huán)周期內(nèi),水溫超過50℃的時間段,最后根據(jù)時間確定答案.

∵開機加熱時每分鐘上升,

∴從需要分鐘,

設一次函數(shù)關系式為:,

代入,

,令,解得;

設反比例函數(shù)關系式為:,

代入,,

代入,解得;

,解得

所以,飲水機的一個循環(huán)周期為分鐘.每一個循環(huán)周期內(nèi),在時間段內(nèi),水溫超過

開機,則時不能喝到超過的水.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個幾何體的小正方體的個數(shù)至少為( )

A. 5 B. 6

C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于第一象限內(nèi)的P(,8),Q(4,m)兩點,與x軸交于A點.

(1)分別求出這兩個函數(shù)的表達式;

(2)直接寫出不等式k1x+b的解集;

(3)M為線段PQ上一點,且MNx軸于N,求△MON的面積最大值及對應的M點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,線段AB和射線BM交于點B

1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)

①在射線BM上作一點C,使AC=AB;

②作∠ABM 的角平分線交ACD點;

③在射線CM上作一點E,使CE=CD,連接DE.

2)在(1)所作的圖形中,猜想線段BDDE的數(shù)量關系,并證明之.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD位于直角坐標系中,AB=2,點D(0,1),以點C為頂點的拋物線y=ax2+bx+c經(jīng)過x軸正半軸上的點A,B,CE⊥x軸于點E.

(1)求點A,B,C的坐標.

(2)將該拋物線向上平移m個單位恰好經(jīng)過點D,且這時新拋物線交x軸于點M,N.

MN的長.

P是新拋物線對稱軸上一動點,將線段AP繞點A順時針旋轉60°AQ,則OQ的最小值為   (直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,在△ ABC中,∠ACB = 2∠B, ∠BAC的平分線AOBC于點D,HAO上一動點,過點H作直線l⊥ AOH,分別交直線AB、AC、BC于點NE、M

1)當直線l經(jīng)過點C(如圖 2),求證:NH = CH;

2)當MBC中點時,寫出CECD之間的等量關系,并加以證明;

3)請直接寫出BN、CE、CD之間的等量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一批襯衫,平均每天可售出件,每件盈利元.為了擴大銷售,增加盈利,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),在一定范圍內(nèi),襯衫的單價每下降元,商場平均每天可多售出件.

如果商場通過銷售這批襯衫每天獲利元,那么襯衫的單價應下降多少元?

當每件襯衫的單價下降多少元時,每天通過銷售襯衫獲得的利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠BAC和∠ABC的平分線相交于點O,過點OEFABBCF,交ACE,過點OODBCD,下列四個結論:

①∠AOB90°+C

AE+BFEF;

③當∠C90°時,E,F分別是AC,BC的中點;

④若ODa,CE+CF2b,則SCEFab

其中正確的是( 。

A.①②B.③④C.①②④D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,以,以為邊作等腰三角形,,分別為邊CD,BC上的點,連結AE,AF,EF,.

求證:.

,求的度數(shù).

請直接指出:當點在何處時,?

查看答案和解析>>

同步練習冊答案