【題目】拋物線(為常數(shù),)與軸交于,兩點,與軸交于點.設該拋物線的頂點為,其對稱軸與軸的交點為.
(1)求該拋物線的解析式;
(2)為線段(含端點)上一點,為軸上一點,且.
①求的取值范圍;
②當取最大值時,將線段向上平移個單位長度,使得線段與拋物線有兩個交點,求的取值范圍.
【答案】(1);(2)①;②
【解析】
(1)利用待定系數(shù)法將A和B的坐標代入求解即可;
(2)①拋物線的對稱軸為:x=2,頂點M(2,4),在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,把三角形三邊長用點P,Q的坐標表達出來,整理得:,利用0≤m≤4,求出n的取值范圍;
②設線段CQ向上平移t個單位長度后的解析式為:聯(lián)立拋物線方程,可求出x2-7x+4t=0,由△=49-16t=0,得,可得當線段CQ與拋物線有兩個交點時,.
解:(1)∵ 點,在拋物線上,
∴
解得,.
∴ 該拋物線的解析式為;
(2)① 由,得(2,4),
設點坐標為(2,m),其中,
則,,,
∵,
∴在△PCQ中,,
即,
整理得,0≤m≤4,
∴當時,取得最小值為;
當時,取得最大值為,
∴的取值范圍是;
②由①知,當取最大值4時,.此時,
∵點,
∴線段的解析式為,
設向上平移個單位長度后的解析式為.
如圖,當線段向上平移,使點恰好在拋物線上時,線段與拋物線有兩個交點,此時點的坐標.
將代入,得.
當線段繼續(xù)向上平移,線段與拋物線只有一個交點時,
由,
得.化簡,得.
由,解得.
∴的取值范圍是.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的8×9的網(wǎng)格中,已知△ABC的頂點均為網(wǎng)格線的交點.
(1)在給定的網(wǎng)格中,畫出△ABC關于直線AB對稱的△ABC1.
(2)將△ABC1繞著點O旋轉后能與△ABC重合,請在網(wǎng)格中畫出點O的位置.
(3)在給定的網(wǎng)格中,畫出以點C為位似中心,將△ABC放大為原來的2倍后得到的△A2B2C.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 在矩形紙片中, , 點,分別是,的中點, 點,分別在,上, 且.將沿折疊, 點的對應點為點,將沿折疊, 點的對應點為點,當四邊形為菱形時, 則_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為二次函數(shù)圖象,直線與拋物線交于兩點,兩點橫坐標分別為根據(jù)函數(shù)圖象信息有下列結論:
①;
②若對于的任意值都有,則;
③;
④;
⑤當為定值時若變大,則線段變長
其中,正確的結論有__________(寫出所有正確結論的番號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為的網(wǎng)格中,點,點均落在格點上,為⊙的直徑.
(1)的長等于__________;
(2)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個以為斜邊、面積為的,并簡要說明點的位置是如何找到的(不要求證明)__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線與軸交于,兩點,與軸交于點,已知點.
(1)若,求,滿足的關系式;
(2)直線與拋物線交于,兩點,拋物線的對稱軸為直線,且.
①求拋物線的解析式(各項系數(shù)用含的式子表示);
②求線段長度的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為鼓勵市民節(jié)約用水,某市自來水公司按分段收費標準收費,右圖反映的是每月收水費y(元)與用水量x(噸)之間的函數(shù)關系
(1)小紅家五月份用水8噸,應交水費_____元;
(2)按上述分段收費標準,小紅家三、四月份分別交水費36元和19.8元,問四月份比三月份節(jié)約用水多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=DB,∠1=∠2,請問添加下面哪個條件不能判斷△ABC≌△DBE的是( 。
A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com