(2010•邢臺(tái)一模)如圖所示,一圓柱高AB為5cm,BC是底面直徑,設(shè)底面半徑長(zhǎng)度為acm,求點(diǎn)P從A點(diǎn)出發(fā)沿圓柱表面移動(dòng)到點(diǎn)C的最短路線.

方案設(shè)計(jì)
某班數(shù)學(xué)興趣小組設(shè)計(jì)了兩種方案:
圖1是方案一的示意圖,該方案中的移動(dòng)路線的長(zhǎng)度為l1,則l1=5+2a(cm);
圖2是方案二的示意圖,設(shè)l2是把圓柱沿AB側(cè)面展開的線段AC的長(zhǎng)度,則l2=
25+π2a2
25+π2a2
cm(保留π).
計(jì)算探究

①當(dāng)a=3時(shí),比較大。簂1
 l2(填“>”“=”或“<”);
②當(dāng)a=4時(shí),比較大。簂1
 l2(填“>”“=”或“<”);
延伸拓展
在一般情況下,設(shè)圓柱的底面半徑為rcm.高為hcm.
①若l12=l22,求h與r之間的關(guān)系;
②假定r取定值,那么h取何值時(shí),l1<l2?
③假定r取定值,那么h取何值時(shí),l1>l2?
分析:易得l2為直角邊長(zhǎng)為5和圓柱的底面周長(zhǎng)的一半的直角三角形的斜邊長(zhǎng);
把相關(guān)數(shù)值代入計(jì)算后,即可得到大小關(guān)系;
先把相關(guān)數(shù)值代入①即可得到h與r之間的關(guān)系,進(jìn)而利用得到關(guān)系式可推出②③.
解答:解:l2=
25+π2a2
cm;
當(dāng)a=3時(shí),(l12=121;(l22=25+9π2;∴l(xiāng)1>l2,
當(dāng)a=4時(shí),(l12=169;(l22=25+16π2;
∴l(xiāng)1<l2,
故答案為
25+π2a2
;>;<.
①(2r+h)2=h22r2,
r=
4h
π2-4
;
②l12<l22時(shí),l1<l2,
(2r+h)2<h22r2,
h<
π2r-4r
4
,
③由②可得h>
π2r-4r
4
時(shí),l1>l2
點(diǎn)評(píng):本題考查了平面展開-最短路徑問(wèn)題;比較兩個(gè)數(shù)的大小,有時(shí)比較兩個(gè)數(shù)的平方比較簡(jiǎn)便;注意運(yùn)用類比的方法做類型題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•邢臺(tái)一模)據(jù)統(tǒng)計(jì),收視“2010年春節(jié)聯(lián)歡晚會(huì)”節(jié)目的觀眾達(dá)78 500 000人,78 500 000用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•邢臺(tái)一模)在圖中,各幾何體都是由大小相同的小正方體按一定規(guī)律壘成的,那么,第n(n≥1)個(gè)幾何體中,小正方體的個(gè)數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•邢臺(tái)一模)已知a=-2,b=1,求(1+
1ab-1
)×(a2b2-2ab+1)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•邢臺(tái)一模)在平面直角坐標(biāo)系中,拋物線y=ax2-6x+c經(jīng)過(guò)點(diǎn)(0,10)和點(diǎn)(3,1).
(1)求這條拋物線的函數(shù)表達(dá)式,并求出它的對(duì)稱軸;
(2)如圖,△ABC的頂點(diǎn)B在拋物線y=ax2-6x+c上,頂點(diǎn)C在y軸上,頂點(diǎn)A在x軸上,且BC=1,∠ABC=90°,求AC的長(zhǎng);
(3)△ABC的頂點(diǎn)B沿拋物線y=ax2-6x+c移動(dòng),移動(dòng)過(guò)程中,邊BC與x軸保持平行,當(dāng)△ABC被x軸分成上下兩部分的面積比為3:1時(shí),求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•邢臺(tái)一模)在圖1-3中,四邊形ABCD和CGEF都是正方形,M是AE的中點(diǎn).

(1)如圖1,點(diǎn)G在BC延長(zhǎng)線上,求證:DM=MF;
(2)在圖1的基礎(chǔ)上,將正方形CGEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到圖2位置,此時(shí)點(diǎn)E在BC延長(zhǎng)線上.求證:DM=MF;
(3)在圖2的基礎(chǔ)上,將正方形CGEF繞點(diǎn)C在任一旋轉(zhuǎn)一個(gè)角度到如圖3位置,此時(shí)DM和MF還相等嗎?(不必說(shuō)明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案