【題目】列分式方程解應(yīng)用題:

某學(xué)校準(zhǔn)備組織部分學(xué)生到少年宮參加活動(dòng),陳老師從少年宮帶回來兩條信息:

信息一:按原來報(bào)名參加的人數(shù),共需要交費(fèi)用320元,如果參加的人數(shù)能夠增加到原來人數(shù)的2倍,就可以享受優(yōu)惠,此時(shí)只需交費(fèi)用480元;

信息二:如果能享受優(yōu)惠,那么參加活動(dòng)的每位同學(xué)平均分?jǐn)偟馁M(fèi)用比原來少4元.

根據(jù)以上信息,原來報(bào)名參加的學(xué)生有多少人?

【答案】20人

【解析】分析:設(shè)原來報(bào)名參加的學(xué)生有x人,根據(jù)如果參加的人數(shù)能夠增加到原來人數(shù)的2倍,就可以享受優(yōu)惠,如果能享受優(yōu)惠,那么參加活動(dòng)的每位同學(xué)平均分?jǐn)偟馁M(fèi)用比原來少4元,可列方程求解.

本題解析:

解:設(shè)原來報(bào)名參加的學(xué)生有x人,

依題意,得

解這個(gè)方程,得x=20.

經(jīng)檢驗(yàn),x=20是原方程的解且符合題意.

答:原來報(bào)名參加的學(xué)生有20人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=COD=90°

1)∠AOC和∠BOD的大小有什么關(guān)系?請(qǐng)說明理由.

2)若∠BOD=150°,則∠BOC是多少度?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖點(diǎn)Aa0)在x軸負(fù)半軸,點(diǎn)Bb0)在x軸正半軸,點(diǎn)C0,c)在y軸正半軸,且

1)如圖1,求SABC;

2)如圖2,若點(diǎn)D0,5),BD的延長線交ACE,求∠AEB

3)如圖3,在(2)的條件下,將線段BA繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°至線段BF,連接EF,試探究EAEB,EF之間有怎樣的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店經(jīng)營某種水果,顧客的批發(fā)量xkg與批發(fā)單價(jià)y/kg之間的關(guān)系如圖所示.圖中線段AB表示批發(fā)量x每增加1 kg批發(fā)單價(jià)y降低0.1/kg

1m的值;

2已知該水果進(jìn)價(jià)為6/kg設(shè)該水果店獲利w

wx的函數(shù)表達(dá)式;

當(dāng)0xm時(shí)w的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)踐與探究:已知ABCD,點(diǎn)P是平面內(nèi)一點(diǎn).

(1)如圖1,若點(diǎn)PAB、CD內(nèi)部,請(qǐng)?zhí)骄俊?/span>BPD、∠B、∠D之間有何數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.

(2)如圖2,若點(diǎn)P移動(dòng)到AB、CD外部,那么∠BPD、∠B、∠D之間的數(shù)量關(guān)系是否發(fā)生變化?請(qǐng)給出你的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD△ABC的角平分線,點(diǎn)E位于邊BC上,已知BDBABE的比例中項(xiàng).

(1)求證:CDE=ABC;

(2)求證:ADCD=ABCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,點(diǎn)A,B,C均在格點(diǎn)上.

(1)請(qǐng)值接寫出點(diǎn)AB,C的坐標(biāo).

(2)若平移線段AB,使B移動(dòng)到C的位置,請(qǐng)?jiān)趫D中畫出A移動(dòng)后的位置D,依次連接B,CD,A,并求出四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cmBC=8cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒5cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在CB邊上以每秒4cm的速度向點(diǎn)B勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0t2),連接PQ

1)若△BPQ△ABC相似,求t的值;

2)連接AQ、CP,若AQ⊥CP,求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案