如圖,四邊形ABCD是一張矩形紙片,AB=6,AD=8,在AB上取一點(diǎn)E,將紙片沿DE翻折,使點(diǎn)A落在BD上的點(diǎn)F處,求AE的長.
∵四邊形ABCD是矩形,AB=6,AD=8,
∴BD=
AB2+AD2
=
62+82
=10,
∵△DEF由△DEA反折而成,
∴△DEF≌△DEA,
∴DF=AD=8,EF=AE,∠EFD=∠A=90°,
∴BF=10-8=2,
設(shè)AE=x,則BE=6-x,EF=x,
在Rt△BEF中,BE=6-x,EF=x,BF=2,
BF2+EF2=BE2,即22+x2=(6-x)2,解得x=
8
3
,即AE的長為
8
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,牧童在A處放牛,其家在B處,A、B到河岸的距離分別為AC和BD,且AC=BD,若點(diǎn)A到河岸CD的中點(diǎn)的距離為500米,則牧童從A處把牛牽到河邊飲水再回家,最短距離是(  )
A.750米B.1000米C.1500米D.2000米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

寫出A、B、C點(diǎn)的坐標(biāo),并作出與△ABC關(guān)于y軸對稱的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(-3,1),B(-1,1),C(-3,4).
(1)作出△ABC關(guān)于y軸的對稱網(wǎng)形△A'B'C',并寫m相應(yīng)點(diǎn)的坐標(biāo);
(2)作出△ABC關(guān)于x軸的對稱圖形△A''B''C'',再作出△A'B'C'關(guān)于x軸的對稱圖形△A'''B'''C''';
(3)△A'''B'''C'''與△A''B''C''之間有怎樣的關(guān)系?△A'''B'''C'''與△ABC對應(yīng)點(diǎn)的坐標(biāo)之間有什么關(guān)系?
注意:凡作出的圖形都要標(biāo)出相應(yīng)的字母.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,點(diǎn)E為BC邊的中點(diǎn),將∠D折起,使點(diǎn)D落在點(diǎn)E處.請你用尺規(guī)作圖畫出折痕和折疊后的圖形.(不要求寫作法,要保留作圖痕跡)
結(jié)論:直線______即為折痕,多邊形______即為折疊后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

把長為8cm的矩形按虛線對折,按圖中的虛線剪出一個(gè)直角梯形,打開得到一個(gè)等腰梯形,剪掉部分的面積為6cm2,則打開后梯形的周長是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

矩形紙片ABCD中,AB=5,AD=4,將紙片折疊,使點(diǎn)B落在邊CD上的B′處,折痕為AE,點(diǎn)P是AE上的一點(diǎn),且BP=BE,連接B′P.
(1)求B′D的長;
(2)求證:四邊形BPB′E的形狀為菱形;
(3)若在折痕AE上存在一點(diǎn)到邊CD的距離與到點(diǎn)B的距離相等,請直接寫出此相等距離的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖是一張直角三角形的紙片,兩直角邊AC=6cm、BC=8cm,現(xiàn)將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,則BD的長為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)D、E分別在AB、BC邊上,BD=BE=1.沿直線DE將△BDE翻折,點(diǎn)B落在點(diǎn)B′處.若點(diǎn)B′的坐標(biāo)為(3,2).則矩形OABC的面積為( 。
A.8B.9C.10D.12

查看答案和解析>>

同步練習(xí)冊答案