【題目】如圖,PA,PB切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,交PA,PB于C,D.若⊙O的半徑為r,△PCD的周長(zhǎng)等于3r,則tan∠APB的值是__________.
【答案】
【解析】
試題連接OA、OB、OP,延長(zhǎng)BO交PA的延長(zhǎng)線于點(diǎn)F.利用切線求得CA=CE,DB=DE,PA=PB再得出PA=PB=r.利用Rt△BFP∽Rt△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.
試題解析:連接OA、OB、OP,延長(zhǎng)BO交PA的延長(zhǎng)線于點(diǎn)F.
∵PA,PB切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E
∴∠OAF=∠PBF=90°,CA=CE,DB=DE,PA=PB,
∵△PCD的周長(zhǎng)=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,
∴PA=PB=r.
在Rt△PBF和Rt△OAF中,
∠FAO=∠FBP
∠OFA=∠PFB,
∴Rt△PBF∽Rt△OAF.
∴
∴AF=FB,
在Rt△FBP中,
∵PF2-PB2=FB2
∴(PA+AF)2-PB2=FB2
∴(r+BF)2-(r)2=BF2,
解得BF=r,
∴tan∠APB=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在第一象限內(nèi),動(dòng)點(diǎn)P在反比例函數(shù)y=的圖象上,以P為頂點(diǎn)的等腰△OPQ,兩腰OP、PQ分別交反比例函數(shù)y=的圖象于A、B兩點(diǎn),作PC⊥OQ于C,BE⊥PC于E,AD⊥OQ于D,則以下說(shuō)選正確的個(gè)數(shù)為( )個(gè)
①為定值;②若k=4m,則A為OP中點(diǎn);③S△PEB=;④OA2+PB2=PQ2.
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷售10臺(tái)A型和20臺(tái)B型電腦的利潤(rùn)為4000元,銷售20臺(tái)A型和10臺(tái)B型電腦的利潤(rùn)為3500元.
(1)求每臺(tái)A型電腦和B型電腦的銷售利潤(rùn);
(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤(rùn)最大?
(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)m(0<m<100)元,且限定商店最多購(gòu)進(jìn)A型電腦70臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤(rùn)最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的點(diǎn),連接AC、CB,過(guò)O作EO∥CB并延長(zhǎng)EO到F,使EO=FO,連接AF并延長(zhǎng),AF與CB的延長(zhǎng)線交于D.求證:AE2=FGFD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線與x軸正半軸,y軸正半軸分別交于點(diǎn)A,B,點(diǎn),點(diǎn)E在第一象限,為等邊三角形,連接AE,BE
求點(diǎn)E的坐標(biāo);
當(dāng)BE所在的直線將的面積分為3:1時(shí),求的面積;
取線段AB的中點(diǎn)P,連接PE,OP,當(dāng)是以OE為腰的等腰三角形時(shí),則______直接寫出b的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,E為AB的中點(diǎn).
(1)求證:△ADC∽△ACB;
(2)CE與AD有怎樣的位置關(guān)系?試說(shuō)明理由;
(3)若AD=4,AB=6,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從點(diǎn)發(fā)出一束光,經(jīng)x軸反射,過(guò)點(diǎn),則這束光從點(diǎn)A到點(diǎn)B所經(jīng)過(guò)的路徑的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD沿DE折疊,點(diǎn)A恰好落在BC上的點(diǎn)F處,點(diǎn)G、H分別在AD、AB上,且FG⊥DH,若tan∠ADE=,則的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線經(jīng)過(guò)點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到△CBD,若點(diǎn)B的坐標(biāo)為(1,0),則點(diǎn)C的坐標(biāo)為( 。
A.(3,)B.(,)C.(3,)D.(,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com